138 research outputs found

    Modelling and offset-free predictive control of the parallel-type double inverted pendulum

    Get PDF

    Nonlinear model predictive motion control of linear motor drive for micro/nano-positioning applications

    Get PDF

    Ariel - Volume 2 Number 2

    Get PDF
    Editors Delvyn C. Case, Jr. Paul M. Fernhoff News Editors Richard Bonanno Daniel B. Gould Ronald A. Hoffman Lay-Out Editor Carol Dolinskas Sports Editor James J. Nocon Contributing Editors MichaeI J. Blecker Lin Sey Edwards Jack Guralnik W. Cherry Light Features Editor Donald A. Bergman Stephen P. Flynn Business Manager Nick Grego Public Relations Robin A. Edward

    Cytokine regulation of lung Th17 response to airway immunization using LPS adjuvant

    Get PDF
    Infections caused by bacteria in the airway preferentially induce a Th17 response. However, the mechanisms involved in the regulation of CD4 T-cell responses in the lungs are incompletely understood. Here, we have investigated the mechanisms involved in the regulation of Th17 differentiation in the lungs in response to immunization with lipopolysaccharide (LPS) as an adjuvant. Our data show that both Myd88 and TRIF are necessary for Th17 induction. This distinctive fate determination can be accounted for by the pattern of inflammatory cytokines induced by airway administration of LPS. We identified the production of interleukin (IL)-1β and IL-6 by small macrophages and IL-23 by alveolar dendritic cells (DCs), favoring Th17 responses, and IL-10 repressing interferon (IFN)-γ production. Furthermore, we show that exogenous IL-1β can drastically alter Th1 responses driven by influenza and lymphocytic choriomeningitis virus infection models and induce IL-17 production. Thus, the precision of the lung immune responses to potential threats is orchestrated by the cytokine microenvironment, can be repolarized and targeted therapeutically by altering the cytokine milieu. These results indicate that how the development of Th17 responses in the lung is regulated by the cytokines produced by lung DCs and macrophages in response to intranasal immunization with LPS adjuvant

    Ariel - Volume 2 Number 6

    Get PDF
    Editors Richard J. Bonanno Robin A. Edwards Associate Editors Steven Ager Stephen Flynn Shep Dickman Tom Williams Lay-out Editor Eugenia Miller Contributing Editors Michael J. Blecker W. Cherry Light James J. Nocon Lynne Porter Editors Emeritus Delvyn C. Case, Jr. Paul M. Fernhof

    Developing new functional TCs

    Get PDF
    Transparent Conductors (TCs) are increasingly critical to the performance and reliability of a number of technologies. Traditionally based primarily on oxides of Ga, In, Zn and Sn the class is rapidly expanding into new materials including both other oxides and more recently composites of metallic or carbon nanowires. Many of these materials offer unique functionality as well as processing and reliability advantages over some of the historic materials. These compounds are all classically non-stoiciometric and often metastable consisting of oxide, non-oxide and composite materials which are being collectively looked at for an increasingly broad set of applications including photovoltaics, solid state lighting, power electronics and a broad class of flexible and wearable electronics. In this talk, we will focus on two main areas; the development of predictive models to be able to identify dopants and the processing regimes where they can be activated as well as the use of nanowire oxide composites to develop a new generation of tunable high performance TC. The complex set of demands for a desired TC include not only classical performance, but also processibility, cost and reliability necessitating a search for new materials. The ability to use materials genomics to identify new dopable TC materials that are experimentally realizable is rapidly increasing. We will discuss recent work on predicting the dopability of Ga2O3 films, which potentially have broad applicability as buffer layers, TCOs, and in power electronics if the doping level can be well controlled. We will discuss the theoretical predictions for the process windows to activate both Sn and Si as dopants and compare this to experimental results and the literature. We will also present resent results on the theoretical prediction and realization of a new p-type TC based on CuZnS, which has demonstrated conductivities of up to 100 S/cm. The latter while not classically an oxide is certainly non-stoichiometric and properties are enhanced in many cases by the use of complex oxide, sulfide and selenide materials. Together these will illustrate the evolving tools both theory and experiment to develop and realize dopants in wide band gap materials. In cases where single materials may not be sufficient, nanowire (metal or carbon based) composites with oxides is increasingly attractive. For example, Ag, and potentially Cu, nanowires embedded in a metal oxide matrix can potentially produce TCs that can be processed at low temperature, have conductivity and transparency comparable to the best TCOs, control interface stability and electronic properties and are suitable to flexible electronics. We will present work on ZnO, InZnO and ZnSnO composites with Ag nanowires where the performance can be as good as high quality InSnO with films Rs\u3c 10 Ohms/sq. We will discuss the dependence on the interrelationship between the nanowire properties and the oxide properties. We will also discus the concept of employing sandwich oxides to separately optimize the top and bottom interfacial properties. This work was supported, in part, by the Center for the Next Generation of Materials by Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. This research also supported in part by the Solar Energy Research Institute for India and the U.S. (SERIIUS) funded jointly by the U.S. Department of Energy subcontract DE AC36-08G028308 (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, with support from the Office of International Affairs) and the Government of India subcontract IUSSTF/JCERDC-SERIIUS/2012 dated 22nd Nov. 2012

    Flux-Line Lattice Structures in Untwinned YBa2Cu3O

    Full text link
    A small angle neutron scattering study of the flux-line lattice in a large single crystal of untwinned YBa2Cu3O is presented. In fields parallel to the c-axis, diffraction spots are observed corresponding to four orientations of a hexagonal lattice, distorted by the a-b anisotropy. A value for the anisotropy, the penetration depth ratio, of 1.18(2) was obtained. The high quality of the data is such that second order diffraction is observed, indicating a well ordered FLL. With the field at 33 degrees to c a field dependent re-orientation of the lattice is observed around 3T.Comment: 4 pages, 4 figure

    I will not go, I cannot go: cultural and social limitations of disaster preparedness in Asia, Africa, and Oceania

    Get PDF
    While much work has been invested in addressing the economic and technical basis of disaster preparedness, less effort has been directed towards understanding the cultural and social obstacles to and opportunities for disaster risk reduction. This paper presents local insights from five different national settings into the cultural and social contexts of disaster preparedness. In most cases, an early warning system was in place, but it failed to alert people to diverse environmental shocks. The research findings show that despite geographical and typological differences in these locations, the limitations of the systems were fairly similar. In Kenya, people received warnings, but from contradictory systems, whereas in the Philippines and on the island of Saipan, people did not understand the messages or take them seriously. In Bangladesh and Nepal, however, a deeper cultural and religious reasoning serves to explain disasters, and how to prevent them or find safety when they strike
    • …
    corecore