2 research outputs found

    Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders

    Full text link
    The segmentation of the telescope pupil (by spiders & the segmented M4) create areas of phase isolated by the width of the spiders on the wavefront sensor (WFS), breaking the spatial continuity of the wavefront. The poor sensitivity of the Pyramid WFS (PWFS) to differential piston leads to badly seen and therefore uncontrollable differential pistons. In close loop operation, differential pistons between segments will settle around integer values of the average sensing wavelength. The differential pistons typically range from one to ten times the sensing wavelength and vary rapidly over time, leading to extremely poor performance. In addition, aberrations created by atmospheric turbulence will contain large amounts of differential piston between the segments. Removing piston contribution over each of the DM segments leads to poor performance. In an attempt to reduce the impact of unwanted differential pistons that are injected by the AO correction, we compare three different approaches. We first limit ourselves to only use the information measured by the PWFS, in particular by reducing the modulation. We show that using this information sensibly is important but will not be sufficient. We discuss possible ways of improvement by using prior information. A second approach is based on phase closure of the DM commands and assumes the continuity of the correction wavefront over the entire unsegmented pupil. The last approach is based on the pair-wise slaving of edge actuators and shows the best results. We compare the performance of these methods using realistic end-to-end simulations. We find that pair-wise slaving leads to a small increase of the total wavefront error, only adding between 20-45 nm RMS in quadrature for seeing conditions between 0.45-0.85 arcsec. Finally, we discuss the possibility of combining the different proposed solutions to increase robustness.Comment: 12 pages, 15 figures, AO4ELT5 Proceedings, Adaptive Optics for Extremely Large Telescopes 5, Conference Proceeding, Tenerife, Canary Islands, Spain, June 25-30, 201

    A story of errors and bias: The optimization of the LGS WFS for HARMONI

    No full text
    International audienceLaser Guide Star [LGS] wave-front sensing is a key element of the Laser Tomographic AO system and mainly drives the final performance of any ground based high resolution instrument. In that framework, HARMONI the first light spectro-imager of the ELT [1,2], will use 6 Laser focused around 90km(@Zenith) with a circular geometry in order to sense, reconstruct and correct for the turbulence volume located above the telescope. LGS wave-front sensing suffers from several well-known limitations [3] which are exacerbated by the giant size of the Extremely Large Telescopes. In that context, the presentation is threefold: (1) we will describe, quantify and analyse the various effects (bias and noise) induced by the LGS WFS in the context of ELT. Among other points, we will focus on the spurious low order signal generated by the spatially and temporally variable sodium layer. (2) we will propose a global design trade-off for the LGS WFS and Tomographic reconstruction process in the HARMONI context. We will show that, under strong technical constraints (especially concerning the detectors characteristics), a mix of opto-mechanic and numerical optimisations will allow to get rid of WFS bias induce by spot elongation without degrading the ultimate system performance (3) beyond HARMONI baseline, we will briefly present alternative strategies (from components, concepts and algorithms point of view) that could solve the LGS spot elongation issues at lower costs and better robustness
    corecore