26 research outputs found

    Collaborative Applications of Internet of Things in various spheres of life: Past, Present and Future

    Get PDF
    The Internet of Things (IoT) connects and establishes communication between physical objects from creatures to machinery over the Internet without human involvement that is embedded with sensors, actuators, software, and various other technologies linked together through wired or wireless networks. In the foreseeable future, the application fields of the Internet of Things will increase continuously and dramatically. This paper considers the current progress of the Internet of Things in the real world and presents various tangible applications of IoT in field of agriculture, industries, smart retails, automated systems, smart buildings, automotive IoT, wearable items, transportation, covid -19, e-health, security and intrusion detection. The paper also provides overview of the collaborative applications of the Internet of Things with Big Data, Artificial Intelligence, Machine Learning, Wireless Sensor Networks, Cloud Computing, Data Management, Cryptography and Blockchain to disseminate its applications for a better understanding of the research community to apply IoT in further innovative fields

    Electronics design and development of Near-Infrared Imager, Spectrometer and Polarimeter

    Full text link
    NISP, a multifaceted near-infrared instrument for the upcoming 2.5m IR telescope at MIRO Gurushikhar, Mount Abu, Rajasthan, India is being developed at PRL, Ahmedabad. NISP will have wide (FOV = 10' x 10') field imaging, moderate (R=3000) spectroscopy and imaging polarimetry operating modes. It is designed based on 0.8 to 2.5 micron sensitive, 2048 X 2048 HgCdTe (MCT) array detector from Teledyne. Optical, Mechanical and Electronics subsystems are being designed and developed in-house at PRL. HAWAII-2RG (H2RG) detector will be mounted along with controlling SIDECAR ASIC inside LN2 filled cryogenic cooled Dewar. FPGA based controller for H2RG and ASIC will be mounted outside the Dewar at room temperature. Smart stepper motors will facilitate motion of filter wheels and optical components to realize different operating modes. Detector and ASIC temperatures are servo controlled using Lakeshore's Temperature Controller (TC) 336. Also, several cryogenic temperatures will be monitored by TC for health checking of the instrument. Detector, Motion and Temperature controllers onboard telescope will be interfaced to USB Hub and fiber-optic trans-receiver. Remote Host computer interface to remote end trans-receiver will be equipped with in-house developed GUI software to control all functionalities of NISP. Design and development aspects of NISP Electronics will be presented in this conference.Comment: 6 pages, 3 figures, Submitted to SPIE Conference Astronomical Telescopes + Instrumentation 202

    Toxicological and anti-tumor effects of a linden extract (Tilia platyphyllos Scop.) in a HPV16-transgenic mouse model

    Get PDF
    Tilia platyphyllos Scop. is a popular broad-leaved tree, native to Central and Southern Europe. Hydroethanolic extracts rich in phenolic compounds obtained from T. platyphyllos Scop. have shown in vitro antioxidant, anti-inflammatory and antitumor properties. The aim of this work was to evaluate the therapeutic properties of a hydroethanolic extract obtained from T. platyphyllos in HPV16-transgenic mice. The animals were divided into eight groups according to their sex and phenotype. Four groups of female: HPV+ exposed to linden (HPV linden; n = 6), HPV+ (HPV water; n = 4), HPV- exposed to linden (WT linden; n = 5) and HPV- (WT water; n = 4) and four groups of male: HPV+ exposed to linden (HPV linden; n = 5), HPV+ (HPV water; n = 5), HPV- exposed to linden (WT linden; n = 5) and HPV- (WT water; n = 7). The linden (Tilia platyphyllos Scop.) extract was orally administered at a dose of 4.5 mg/10 mL per animal (dissolved in water) and changed daily for 33 days. The hydroethanolic extract of T. platyphyllos consisted of protocatechuic acid and (-)-epicatechin as the most abundant phenolic acid and flavonoid, respectively, and was found to be stable during the studied period. In two male groups a significant positive weight gain was observed but without association with the linden extract. Histological, biochemical, and oxidative stress analyses for the evaluation of kidney and liver damage support the hypothesis that the linden extract is safe and well-tolerated under the present experimental conditions. Skin histopathology does not demonstrate the chemopreventive effect of the linden extract against HPV16-induced lesions. The linden extract has revealed a favourable toxicological profile; however, additional studies are required to determine the chemopreventive potential of the linden extract. This journal isThis work was supported by the project IBERPHENOL, project number 0377_IBERPHENOL_6_E; Interact R&D project, operation number NORTE-01-0145-FEDER-000017, National Funds by FCT – Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020 (CITAB), and project UIDB/ CVT/00772/2020 (CECAV) and the post-graduation grant SFRH/ BD/136747/2018 and 2020.04789.BD; the authors are also grateful to FCT, Portugal and FEDER under programme PT2020 for financial support to CIMO (UIDB/00690/2020) and L. Barros acknowledges the national funding by FCT, P. I., through the institutional scientific employment program-contract. The authors would like to thank Cantinho das Aromáticas organic farmers from Vila Nova de Gaia (Portugal) for providing the samples. This work was financially supported by: Base Funding - UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE - funded by national funds through the FCT/MCTES (PIDDAC).info:eu-repo/semantics/publishedVersio

    Properties of nucleosomes from divergent eukaryotes

    Get PDF
    It is widely assumed that eukaryotes package their genomes in equivalent chromatin structures. To test whether divergent eukaryotes form equivalent nucleosomes we selected eight organisms with completely sequenced genomes representing distant positions in eukaryote evolution and distinctive genome properties. These were Homo sapiens, Xenopus laevis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Plasmodium falciparum, Leishmania major, Giardia lamblia and Encephalitozoon cuniculi. Histone genes were synthesised for high level recombinant expression in Escherichia coli and methods optimised for high yield and purity. The ability to form equivalent histone (H3-H4)2 tetramer and (H2A-H2B-H3-H4)2 octamer complexes was monitored by gel filtration chromatography and crosslinking. P. falciparum histones behaved similarly to X. laevis, H. sapiens and S. cerevisiae equivalents but the more divergent histones precipitated as tetramers. G. lamblia and E. cuniculi histones, but not those from L. major, formed octamers with good efficiency. Differences in four helix bundle packing interface residues differ and may allow the divergent organism tetramers to form insoluble extended polymers. All organisms could be shown to form nucleosomes on two different 147 bp metazoan nucleosome positioning DNAs with similar albeit distinct hydrodynamic properties and DNA footprints. Assembly of E. cuniculi tetrasomes on metazoan nucleosome positioning sequences revealed a distinctive DNA sequence specificity. To compare sequence preferences of divergent organism nucleosome assembly, a library of human mononucleosomal DNAs was used for systematic evolution of ligands by exponential enrichment (SELEX) with H. sapiens, P. falciparum and E. cuniculi histone octamers. The selected DNA fragments were submitted for deep sequencing and will be analysed to test whether genome properties are linked with histone sequence variation in the organisms

    2DEG enhancement via epilayer stress engineering in AlN/GaN/AlN heterostructure

    No full text
    Over the last couple of decades, GaN-based materials have emerged as promising candidates for high power and high-frequency devices. This can be attributed to their unique and attractive properties such as wide range of bandgap, high saturation velocity, spontaneous and piezoelectric polarization, and high thermal and chemical stability. The AlGaN/GaN high electron mobility transistors (HEMTs) have been extensively studied during this time. The two-dimensional electron gas (2DEG) at the AlGaN/GaN heterointerface can be achieved without doping owing to their polarization properties. Despite their promising device performances for high power and high-frequency applications, they are limited by issues such as self-heating, buffer leakage and reliability. The high current in the AlGaN/GaN HEMTs is driven through the narrow (~10 nm) 2DEG channel causing significantly high self-heating in this region, resulting in negative output conductance and decrease in carrier mobility. The increase of temperature due to self-heating deteriorates the device performance and may reach a level where it may lead to device failure. The heat-dissipation in HEMTs majorly takes place in the vertical direction. Thus, the substrate acts as the heat sink for the device, making its thermal conductivity vital. The vertical breakdown and leakage can be reduced by having better carrier confinement. The reliability issues arising from strained AlGaN barriers can be improved significantly by reducing this layer's mechanical strain. Lately, AlN(barrier)/GaN(channel)/AlN(buffer) double heterojunction (DH)-HEMTs have been explored to overcome these limitations. The AlN buffer as a back-barrier offers strong carrier confinement, reducing buffer leakage due to its large bandgap. It also improves heat dissipation due to its higher thermal conductivity. Moreover, strain-free AlN barrier is expected to improve reliability as well as vertical scaling of HEMTs. Majority of the reported AlN/GaN/AlN (AGA) DH-HEMTs exhibit sheet carrier density in the range of 2.2-3.2×1013 cm−2 with carrier mobility varying between 300-600 cm2/V.sec. The challenge is to grow a relaxed AlN back-barrier and the subsequent growth of coherently strained GaN channel and unstrained AlN barrier layers, which will be addressed in this report. In this work, simulation-based studies of DC characteristics of AlGaN/GaN HEMTs on various substrates (sapphire, Si, GaN, AlN, 4H-SiC and Diamond) were conducted to determine the most suitable substrate for the growth of AlGaN/GaN HEMTs. This was followed by the growth and characterization of AlN/GaN/AlN double heterojunction (DH) HEMT layer structures on semi-insulating 4H-SiC substrates by plasma assisted molecular beam epitaxy (PA-MBE). The higher thermal conductivities of AlN and 4H-SiC are likely to improve heat dissipation, thus providing greater thermal stability and lesser device deterioration due to self-heating. The simulations performed were based on a fabricated AlGaN/GaN HEMT on sapphire substrate. The results provided a quantitative estimation of the effect of substrate thermal properties on the DC characteristics. The lattice heat maps of HEMTs on various substrates (sapphire, Si, 4H-SiC, GaN, AlN and diamond) were analyzed for variations in channeltemperature, vertical temperature profile and the hotspot temperature. The DC characteristics of the HEMTs were enhanced as the thermal conductivity of the substrate material increased. The current degradation due to self-heating reduced remarkably from ~35% to ~18% as the substrate material was changed from sapphire to 4H-SiC. It further decreased to ~11% when diamond was used as the substrate in place of 4H-SiC. This indicated that self-heating reduced progressively as the thermal conductivity of AlGaN/GaN HEMT's substrates increased. A similar trend was observed for the rise in the hotspot temperature among the HEMTs studied. AlGaN/GaN HEMTs on diamond substrate conclusively showed the best results among the substrates studied. However, the high costs and challenges involved in the epitaxial growth of HEMTs on diamond outweigh the improvements observed when compared to 4H-SiC. Thus, 4H-SiC is the choice of substrate for the growth of AlN/GaN/AlN DH-HEMTs. The AlN/GaN/AlN DH-HEMT epilayers were optimized for the III/V ratio, growth temperature and thickness while maintaining constant N2 flow and RF power. An optimized 300 nm thick AlN buffer was grown with the initial 100 nm grown under 3D growth conditions (III/V = 0.45) followed by 200 nm growth under 2D growth conditions (III/V = 1.04) at a substrate temperature of 750 ºC. A droplet-free and crack-free surface with smooth surface morphology was achieved (RMS roughness ~0.4 nm for 5×5 μm2 AFM scan). The residual compressive stress in the AlN buffer was -1.1 GPa. The subsequent GaN channel layer was optimized to be grown at 720 ºC with minimal relaxation at nearly stoichiometric condition (III/V = 1.05).The AGA heterostructure was completed with an AlN barrier layer grown at near stoichiometric (III/V~1) growth condition and a 2 nm GaN cap layer. The AlN barrier and GaN channel combination of 3 nm and 43 nm thickness resulted in 2DEG density of 2.16×1013 cm-2 and carrier mobility of 528 cm2/V. s. Furthermore, this work reports on the carrier mobility enhancement in AlN/GaN/AlN DH-HEMTs on 4H-SiC with high sheet carrier density, by stress engineering in AlN buffer and GaN channel. A comparative study of AGA heterostructures with varying growth conditions showed that the compressive stress in the GaN channel varies non-linearly with AlN buffer stress. The 2DEG density (~ 4.1×1013 cm−2) is unaffected by the epilayers' stress variations. However, the carrier mobility increases from 183 cm2 V−1 s−1 to 613 cm2 V−1 s−1 as the GaN channel stress is increased from -3.0 GPa to -3.8 GPa, respectively. The carrier mobility enhancement in AlN/GaN/AlN heterostructure was achieved via epilayer stress engineering. The high (μ×ns) product reported in this work would lead to higher device output power density.Doctor of Philosoph

    Performance Optimization using Fuzzy Modular Arithmetic in Short-Memory Scalar Multiplication for Koblitz Curve

    No full text
    It is widely recognized that data security, influence ofprocessor types used, resources and the architecture regardingthroughputs are playing a central role in IT systems. EllipticCurve Cryptography (ECC) is a sort of public-key cryptographythat is an alternative to other public-key algorithms like RSA,DSA. It is widely accepted because of the usage of smallerparameters than other public-key cryptosystems but with samelevel of security, reduces the memory consumption of hardwareand software by using the special kind of functionalities and animproved versions of algorithm with a larger margin of theprevious systems by using an extension of ECC called KoblitzCurve.It has becoming increasingly common to implementsuch kind of systems that takes a shorter computational time foran execution of an instruction. The previous versions were of anarithmetic computation that takes a longer time. I haveemphasized on fuzzy modular arithmetic that takes a veryshorter time towards the computational growth compared to thestandard one. I have also measured the performances in threesenses like theoretically, software and hardware perspective thatshows the evolution in the field of cryptograp

    Front. Mol. Biosci.

    No full text
    In the past decade, the focus of bottom-up synthetic biology has shifted from the design of complex artificial cell architectures to the design of interactions between artificial cells mediated by physical and chemical cues. Engineering communication between artificial cells is crucial for the realization of coordinated dynamic behaviours in artificial cell populations, which would have implications for biotechnology, advanced colloidal materials and regenerative medicine. In this review, we focus our discussion on molecular communication between artificial cells. We cover basic concepts such as the importance of compartmentalization, the metabolic machinery driving signaling across cell boundaries and the different modes of communication used. The various studies in artificial cell signaling have been classified based on the distance between sender and receiver cells, just like in biology into autocrine, juxtacrine, paracrine and endocrine signaling. Emerging tools available for the design of dynamic and adaptive signaling are highlighted and some recent advances of signaling-enabled collective behaviours, such as quorum sensing, travelling pulses and predator-prey behaviour, are also discussed
    corecore