14 research outputs found

    Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    No full text
    International audienceThe ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184(32) UCN/cm3, a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39(7) UCN/cm3, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ(dn)=3×10−27ecm

    Evaluation of commercial nickel–phosphorus coating for ultracold neutron guides using a pinhole bottling method

    No full text
    International audienceWe report on the evaluation of commercial electroless nickel phosphorus (NiP) coatings for ultracold neutron (UCN) transport and storage. The material potential of 50μm thick NiP coatings on stainless steel and aluminum substrates was measured to be VF=213(5.2)  neV using the time-of-flight spectrometer ASTERIX at the Lujan Center. The loss per bounce probability was measured in pinhole bottling experiments carried out at ultracold neutron sources at Los Alamos Neutron Science Center and the Institut Laue-Langevin. For these tests a new guide coupling design was used to minimize gaps between the guide sections. The observed UCN loss in the bottle was interpreted in terms of an energy independent effective loss per bounce, which is the appropriate model when gaps in the system and upscattering are the dominate loss mechanisms, yielding a loss per bounce of 1.3(1)×10−4 . We also present a detailed discussion of the pinhole bottling methodology and an energy dependent analysis of the experimental results

    Status of the UCNτ\tau experiment

    No full text
    International audienceThe neutron is the simplest nuclear system that can be used to probe the structure of the weak interaction and search for physics beyond the standard model. Measurements of neutron lifetime and β-decay correlation coefficients with precisions of 0.02% and 0.1%, respectively, would allow for stringent constraints on new physics. The UCNτ experiment uses an asymmetric magneto-gravitational UCN trap with in situ counting of surviving neutrons to measure the neutron lifetime, τn = 877.7s (0.7s)stat (+0.4/−0.2s)sys. We discuss the recent result from UCNτ, the status of ongoing data collection and analysis, and the path toward a 0.25 s measurement of the neutron lifetime with UCNτ

    Status of the UCNτ experiment

    Get PDF
    The neutron is the simplest nuclear system that can be used to probe the structure of the weak interaction and search for physics beyond the standard model. Measurements of neutron lifetime and β-decay correlation coefficients with precisions of 0.02% and 0.1%, respectively, would allow for stringent constraints on new physics. The UCNτ experiment uses an asymmetric magneto-gravitational UCN trap with in situ counting of surviving neutrons to measure the neutron lifetime, τn = 877.7s (0.7s)stat (+0.4/−0.2s)sys. We discuss the recent result from UCNτ, the status of ongoing data collection and analysis, and the path toward a 0.25 s measurement of the neutron lifetime with UCNτ

    New result for the neutron β\beta-asymmetry parameter A0A_0 from UCNA

    No full text
    International audienceBackground: The neutron β-decay asymmetry parameter A0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ≡gA/gV, which under assumption of the conserved vector current hypothesis (gV=1) determines gA. Precise values for gA are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron β-decay angular correlation performed with UCN. This article reports the most precise result for A0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A0. Results: The UCNA experiment reports a new 0.67% precision result for A0 of A0=−0.12054(44)stat(68)syst, which yields λ=gA/gV=−1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=−0.12015(34)stat(63)syst and λ=gA/gV=−1.2772(20). Conclusions: This new result for A0 and gA/gV from the UCNA experiment has provided confirmation of the shift in values for gA/gV that has emerged in the published results from more recent experiments, which are in striking disagreement with the results from older experiments. Individual systematic corrections to the asymmetries in older experiments (published prior to 2002) were >10%, whereas those in the more recent ones (published after 2002) have been of the scale of <2%. The impact of these older results on the global average will be minimized should future measurements of A0 reach the 0.1% level of precision with central values near the most recent results

    Search for neutron dark decay:

    No full text
    In January, 2018, Fornal and Grinstein proposed that a previously unobserved neutron decay branch to a dark matter particle (χ) could account for the discrepancy in the neutron lifetime observed in two different types of experiments. One of the possible final states discussed includes a single χ along with an e+e− pair. We use data from the UCNA (Ultracold Neutron Asymmetry) experiment to set limits on this decay channel. Coincident electron-like events are detected with ∼ 4π acceptance using a pair of detectors that observe a volume of stored Ultracold Neutrons (UCNs). We use the timing information of coincidence events to select candidate dark sector particle decays by applying a timing calibration and selecting events within a physically-forbidden timing region for conventional n → p + e- + ν̅e decays. The summed kinetic energy (Ee+e−) from such events is reconstructed and used to set limits, as a function of the χ mass, on the branching fraction for this decay channel

    Improved limits on Fierz interference using asymmetry measurements from the Ultracold Neutron Asymmetry (UCNA) experiment

    No full text
    International audienceThe Ultracold Neutron Asymmetry (UCNA) experiment was designed to measure the β-decay asymmetry parameter, A0, for free neutron decay. In the experiment, polarized ultracold neutrons are transported into a decay trap, and their β-decay electrons are detected with ≈4π acceptance into two detector packages which provide position and energy reconstruction. The experiment also has sensitivity to bn, the Fierz interference term in the neutron β-decay rate. In this work, we determine bn from the energy dependence of A0 using the data taken during the UCNA 2011–2013 run. In addition, we present the same type of analysis using the earlier 2010 A dataset. Motivated by improved statistics and comparable systematic errors compared to the 2010 data-taking run, we present a new bn measurement using the weighted average of our asymmetry dataset fits, to obtain bn=0.066±0.041stat±0.024syst which corresponds to a limit of −0.012<bn<0.144 at the 90% confidence level
    corecore