473 research outputs found

    Evidence for particle-hole excitations in the triaxial strongly-deformed well of ^{163}Tm

    Get PDF
    Two interacting, strongly-deformed triaxial (TSD) bands have been identified in the Z = 69 nucleus ^{163}Tm. This is the first time that interacting TSD bands have been observed in an element other than the Z = 71 Lu nuclei, where wobbling bands have been previously identified. The observed TSD bands in ^{163}Tm appear to be associated with particle-hole excitations, rather than wobbling. Tilted-Axis Cranking (TAC) calculations reproduce all experimental observables of these bands reasonably well and also provide an explanation for the presence of wobbling bands in the Lu nuclei, and their absence in the Tm isotopes.Comment: 13 pages, 7 figure

    Carbon materials as electrocatalysts for oxygen reduction in phosphoric acid medium

    Get PDF
    The behaviour of acstylene black (Indian grade) as catalyst support material is reported. The acetylene black is heat treated (activated) at variour temperatures in nitrogen atmosphere. The surface area of the various heat treated samples is obtained. Platinum is deporited into the carbon bye reported technique. The of platinum agglomeration on the carbon in identified through scanning electron microscope. The above catalyst is applied to glassy carbon disc. The electrochemical surface area of the catalyst ie determined by the hydrogen absorption and oxidation in alkaline medium. Similar electrodes (disc, dia 6 mm) are used in H3PO4 medium. Cyclic vottammograms are obtained in the oxygen evolution region and oxygen reduction region. The exchange current density of the catalyst for oxygen evolution and reduction ir reported for different catalyst loadings

    High-spin structure and Band Termination in 103^{103}Cd

    Full text link
    Excited states of the neutron deficient 103^{103}Cd nucleus have been investigated via the 72^{72}Ge(35^{35}Cl, p3n) reaction at beam energy of 135 MeV by use of in-beam spectroscopic methods. Gamma rays depopulating the excited states were detected using the Gammasphere spectrometer with high-fold Îł\gamma-ray coincidences. A quadrupole Îł\gamma-ray coincidence analysis (Îł4\gamma^{4}) has been used to extend the known level scheme. The positive parity levels have been established up to J=35/2ℏJ = 35/2\hbar and Ex=7.071E_{x} = 7.071 MeV. In addition to the observation of highly-fragmented level scheme belonging to the positive-parity sequences at Ex∌_{x}\sim 5 MeV, the termination of a negative-parity sequence connected by E2E2 transitions has been established at J=47/2ℏJ = 47/2 \hbar and Ex=11.877E_{x} = 11.877 MeV. The experimental results corresponding to both the positive- and negative-parity sequences have been theoretically interpreted in the framework of the core particle coupling model. Evidence is presented for a shape change from collective prolate to non-collective oblate above the Jπ=39/2−J^{\pi} = 39/2^{-} (8011 keV) level and for a smooth termination of the negative-parity band.Comment: 19 pages, 8 figures. Submitted to Phys. Rev.

    High-spin structure and Band Termination in 103^{103}Cd

    Full text link
    Excited states of the neutron deficient 103^{103}Cd nucleus have been investigated via the 72^{72}Ge(35^{35}Cl, p3n) reaction at beam energy of 135 MeV by use of in-beam spectroscopic methods. Gamma rays depopulating the excited states were detected using the Gammasphere spectrometer with high-fold Îł\gamma-ray coincidences. A quadrupole Îł\gamma-ray coincidence analysis (Îł4\gamma^{4}) has been used to extend the known level scheme. The positive parity levels have been established up to J=35/2ℏJ = 35/2\hbar and Ex=7.071E_{x} = 7.071 MeV. In addition to the observation of highly-fragmented level scheme belonging to the positive-parity sequences at Ex∌_{x}\sim 5 MeV, the termination of a negative-parity sequence connected by E2E2 transitions has been established at J=47/2ℏJ = 47/2 \hbar and Ex=11.877E_{x} = 11.877 MeV. The experimental results corresponding to both the positive- and negative-parity sequences have been theoretically interpreted in the framework of the core particle coupling model. Evidence is presented for a shape change from collective prolate to non-collective oblate above the Jπ=39/2−J^{\pi} = 39/2^{-} (8011 keV) level and for a smooth termination of the negative-parity band.Comment: 19 pages, 8 figures. Submitted to Phys. Rev.

    A Composite Chiral Pair of Rotational Bands in the odd-A Nucleus 135Nd

    Get PDF
    High-spin states in 135Nd were populated with the 110Pd(30Si,5n)135Nd reaction at a 30Si bombarding energy of 133 MeV. Two Delta(I)=1 bands with close excitation energies and the same parity were observed. These bands are directly linked by Delta(I)=1 and Delta(I)=2 transitions. The chiral nature of these two bands is confirmed by comparison with three-dimensional tilted axis cranking calculations. This is the first observation of a three-quasiparticle chiral structure and established the primarily geometric nature of this phenomenon.Comment: 10 pages, 5 figures (1 in color), 1 table, submitted to Physics Review Letters, written in REVTEX4 forma

    Lifetime measurements of Triaxial Strongly Deformed bands in 163^{163}Tm

    Full text link
    With the Doppler Shift Attenuation Method, quadrupole transition moments, QtQ_t, were determined for the two recently proposed Triaxial Strongly Deformed (TSD) bands in 163^{163}Tm. The measured QtQ_t moments indicate that the deformation of these bands is larger than that of the yrast, signature partners. However, the measured values are smaller than those predicted by theory. This observation appears to be valid for TSD bands in several nuclei of the regionComment: 8 pages, 5 figures. Submitted to Physical Review

    Level Structure of 103Ag at high spins

    Full text link
    High spin states in 103^{103}Ag were investigated with the Gammasphere array, using the 72^{72}Ge(35^{35}Cl,2p2n2p2n)103^{103}Ag reaction at an incident beam energy of 135 MeV. A ΔJ\Delta J=1 sequence with predominantly magnetic transitions and two nearly-degenerate ΔJ=1\Delta J=1 doublet bands have been observed. The dipole band shows a decreasing trend in the B(M1)B(M1) strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three experimental signatures of chirality in the nuclei; however microscopic calculations are indicative of a magnetic phenomeno

    Uteroglobin Represses Allergen-induced Inflammatory Response by Blocking PGD2 Receptor–mediated Functions

    Get PDF
    Uteroglobin (UG) is an antiinflammatory protein secreted by the epithelial lining of all organs communicating with the external environment. We reported previously that UG-knockout mice manifest exaggerated inflammatory response to allergen, characterized by increased eotaxin and Th2 cytokine gene expression, and eosinophil infiltration in the lungs. In this study, we uncovered that the airway epithelia of these mice also express high levels of cyclooxygenase (COX)-2, a key enzyme for the production of proinflammatory lipid mediators, and the bronchoalveolar lavage fluid (BALF) contain elevated levels of prostaglandin D2. These effects are abrogated by recombinant UG treatment. Although it has been reported that prostaglandin D2 mediates allergic inflammation via its receptor, DP, neither the molecular mechanism(s) of DP signaling nor the mechanism by which UG suppresses DP-mediated inflammatory response are clearly understood. Here we report that DP signaling is mediated via p38 mitogen–activated protein kinase, p44/42 mitogen–activated protein kinase, and protein kinase C pathways in a cell type–specific manner leading to nuclear factor–ÎșB activation stimulating COX-2 gene expression. Further, we found that recombinant UG blocks DP-mediated nuclear factor–ÎșB activation and suppresses COX-2 gene expression. We propose that UG is an essential component of a novel innate homeostatic mechanism in the mammalian airways to repress allergen-induced inflammatory responses

    Complex ferromagnetic state and magnetocaloric effect in single crystalline Nd_{0.7}Sr_{0.3}MnO_{3}

    Full text link
    The magnetocaloric effect in single crystalline Nd_{0.7}Sr_{0.3}MnO_{3} is investigated by measuring the field-induced adiabatic change in temperature which reveals a single negative peak around 130 K well below the Curie temperature (T_C=203 K). In order to understand this unusual magnetocaloric effect, we invoke the reported {55}^Mn spin-echo nuclear magnetic resonance, electron magnetic resonance and polarized Raman scattering measurements on Nd_{0.7}Sr_{0.3}MnO_{3}. We show that this effect is a manifestation of a competition between the double exchange mechanism and correlations arising from coupled spin and lattice degrees of freedom which results in a complex ferromagnetic state. The critical behavior of Nd_{0.7}Sr_{0.3}MnO_{3} near Curie temperature is investigated to study the influence of the coupled degrees of freedom. We find a complicated behavior at low fields in which the order of the transition could not be fixed and a second-order-like behavior at high fields.Comment: Accepted for publication in Phys. Rev.

    Analog E1 transitions and isospin mixing

    Get PDF
    We investigate whether isospin mixing can be determined in a model-independent way from the relative strength of E1 transitions in mirror nuclei. The specific examples considered are the A=31 and A=35 mirror pairs, where a serious discrepancy between the strengths of 7/2--->5/2+ transitions in the respective mirror nuclei has been observed. A theoretical analysis of the problem suggests that it ought to be possible to disentangle the isospin mixing in the initial and final states given sufficient information on experimental matrix elements. With this in mind, we obtain a lifetime for the relevant 7/2- state in 31S using the Doppler-shift attenuation method. We then collate the available information on matrix elements to examine the level of isospin mixing for both A=31 and A=35 mirror pairs
    • 

    corecore