14 research outputs found

    The role of NF-κB transcription factor in cellular response to ionizing radiation

    Get PDF
    The NF-κB transcription factor is involved in different aspects of the cellular response to stress, including atypical NF-κB pathway activated by damage induced by ionizing radiation. Moreover, NF-κB could be involved in the regulation of genes activated by other stress-responsive factors. Here we aimed to perform the integrative genomics screening to compare subsets of NF-κB-dependent genes induced by a pro-inflammatory stimulus and a high dose of ionizing radiation and also to identify new genes potentially co-regulated by NF-κB and p53 transcription factors in irradiated cells. Methods. The RelA-containing NF-κB dimers were activated by TNFα cytokine (classical proinflammatory pathway) and a single 4 or 10 Gy dose (atypical radiation-induced pathway) in human osteosarcoma cells. NF-κB-dependent and p53-dependent genes were identified using the gene expression profiling (by RNA-Seq) in cells with downregulated RELA or TP53 combined with the global profiling of RelA and p53 binding sites (by ChIP-Seq). Candidate genes were subsequently validated by quantitative PCR. Results: There were 37 NF-κB-dependent protein-coding genes identified: in all cases RelA bound in their regulatory regions upon activation while downregulation of RELA suppressed their stimulus-induced upregulation, which apparently indicated the positive regulation mode (this set of genes included a few “novel” NF-κB-dependent species). The kinetics of the NF-κB activation was slower in cells exposed to radiation than in cytokine-stimulated ones. However, subsets of NF-κB-dependent genes upregulated by both types of stimuli were essentially the same. Moreover, we identified a subset of radiation-modulated genes whose expression was affected by silencing of both TP53 and RELA, and a subset of radiation-upregulated genes where radiation stimulated binding of both p53 and RelA. For three genes an antagonistic effect of both transcription factors was observed: IL4I1 was activated by NF-κB and inhibited by p53, while CDKN1A and SERPINE1 were activated by p53 and inhibited by NF-κB. Moreover, RRAD was putatively co-activated by both factors. Conclusions: One could expect that similar cellular processes resulting from activation of the NF-κB pathway could be induced in cells responding to pro-inflammatory cytokines and in cells where so-called “sterile inflammation” response was initiated by radiation-induced damage. Moreover, certain stress-responsive genes induced by ionizing radiation could be co-regulated by NF-κB and p53.publishedVersio

    Heat shock factor 1 (Hsf1) cooperates with estrogen receptor α (erα) in the regulation of estrogen action in breast cancer cells

    Get PDF
    Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2-stimulated cell scattering, and reduce adhesion to collagens and cell motility in ER-positive breast cancer cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1-deficient cells, in part due to the higher basal expression of E2-dependent genes, which correlates with the enhanced binding of unliganded ERα to chromatin in such cells. HSF1 and ERα can cooperate directly in E2-stimulated regulation of transcription, and HSF1 potentiates the action of ERα through a mechanism involving chromatin reorganization. Furthermore, HSF1 deficiency may increase the sensitivity to hormonal therapy (4-hydroxytamoxifen) or CDK4/6 inhibitors (palbociclib). Analyses of data from The Cancer Genome Atlas database indicate that HSF1 increases the transcriptome disparity in ER-positive breast cancer and can enhance the genomic action of ERα. Moreover, only in ER-positive cancers an elevated HSF1 level is associated with metastatic disease.publishedVersio

    Cross talk between cytokine and hyperthermia-induced pathways: identification of different subsets of NF-κB-dependent genes regulated by TNFα and heat shock

    Get PDF
    Heat shock inhibits NF-κB signaling, yet the knowledge about its influence on the regulation of NF-κB-dependent genes is limited. Using genomic approaches, i.e., expression microarrays and ChIP-Seq, we aimed to establish a global picture for heat shock-mediated impact on the expression of genes regulated by TNFα cytokine. We found that 193 genes changed expression in human U-2 osteosarcoma cells stimulated with cytokine (including 77 genes with the κB motif in the proximal promoters). A large overlap between sets of genes modulated by cytokine or by heat shock was revealed (86 genes were similarly affected by both stimuli). Binding sites for heat shock-induced HSF1 were detected in regulatory regions of 1/3 of these genes. Furthermore, pre-treatment with heat shock affected the expression of 2/3 of cytokine-modulated genes. In the largest subset of co-affected genes, heat shock suppressed the cytokine-mediated activation (antagonistic effect, 83 genes), which genes were associated with the canonical functions of NF-κB signaling. However, subsets of co-activated and co-repressed genes were also revealed. Importantly, pre-treatment with heat shock resulted in the suppression of NF-κB binding in the promoters of the cytokine-upregulated genes, either antagonized or co-activated by both stimuli. In conclusion, we confirmed that heat shock inhibited activation of genes involved in the classical cytokine-mediated functions of NF-κB. On the other hand, genes involved in transcription regulation were over-represented in the subset of genes upregulated by both stimuli. This suggests the replacement of NF-κB-mediated regulation by heat shock-mediated regulation in the latter subset of genes, which may contribute to the robust response of cells to both stress conditions

    PHLDA1 Does Not Contribute Directly to Heat Shock-Induced Apoptosis of Spermatocytes

    No full text
    Spermatocytes are among the most heat-sensitive cells and the exposure of testes to heat shock results in their Heat Shock Factor 1 (HSF1)-mediated apoptosis. Several lines of evidence suggest that pleckstrin-homology-like domain family A, member 1 (PHLDA1) plays a role in promoting heat shock-induced cell death in spermatogenic cells, yet its precise physiological role is not well understood. Aiming to elucidate the hypothetical role of PHLDA1 in HSF1-mediated apoptosis of spermatogenic cells we characterized its expression in mouse testes during normal development and after heat shock. We stated that transcription of Phlda1 is upregulated by heat shock in many adult mouse organs including the testes. Analyzes of the Phlda1 expression during postnatal development indicate that it is expressed in pre-meiotic or somatic cells of the testis. It starts to be transcribed much earlier than spermatocytes are fully developed and its transcripts and protein products do not accumulate further in the later stages. Moreover, neither heat shock nor expression of constitutively active HSF1 results in the accumulation of PHLDA1 protein in meiotic and post-meiotic cells although both conditions induce massive apoptosis of spermatocytes. Furthermore, the overexpression of PHLDA1 in NIH3T3 cells leads to cell detachment, yet classical apoptosis is not observed. Therefore, our findings indicate that PHLDA1 cannot directly contribute to the heat-induced apoptosis of spermatocytes. Instead, PHLDA1 could hypothetically participate in death of spermatocytes indirectly via activation of changes in the somatic or pre-meiotic cells present in the testes

    HSF1 Can Prevent Inflammation following Heat Shock by Inhibiting the Excessive Activation of the ATF3 and JUN&FOS Genes

    No full text
    Heat Shock Factor 1 (HSF1), a transcription factor frequently overexpressed in cancer, is activated by proteotoxic agents and participates in the regulation of cellular stress response. To investigate how HSF1 level affects the response to proteotoxic stress, we integrated data from functional genomics analyses performed in MCF7 breast adenocarcinoma cells. Although the general transcriptional response to heat shock was impaired due to HSF1 deficiency (mainly chaperone expression was inhibited), a set of genes was identified, including ATF3 and certain FOS and JUN family members, whose stress-induced activation was stronger and persisted longer than in cells with normal HSF1 levels. These genes were direct HSF1 targets, suggesting a dual (activatory/suppressory) role for HSF1. Moreover, we found that heat shock-induced inflammatory response could be stronger in HSF1-deficient cells. Analyses of The Cancer Genome Atlas data indicated that higher ATF3, FOS, and FOSB expression levels correlated with low HSF1 levels in estrogen receptor-positive breast cancer, reflecting higher heat shock-induced expression of these genes in HSF1-deficient MCF7 cells observed in vitro. However, differences between the analyzed cancer types were noted in the regulation of HSF1-dependent genes, indicating the presence of cell-type-specific mechanisms. Nevertheless, our data indicate the existence of the heat shock-induced network of transcription factors (associated with the activation of TNFα signaling) which includes HSF1. Independent of its chaperone-mediated cytoprotective function, HSF1 may be involved in the regulation of this network but prevents its overactivation in some cells during stress.publishedVersio

    RRAD, IL4I1, CDKN1A, and SERPINE1 genes are potentially co-regulated by NF-κB and p53 transcription factors in cells exposed to high doses of ionizing radiation

    No full text
    Abstract Background The cellular response to ionizing radiation involves activation of p53-dependent pathways and activation of the atypical NF-κB pathway. The crosstalk between these two transcriptional networks include (co)regulation of common gene targets. Here we looked for novel genes potentially (co)regulated by p53 and NF-κB using integrative genomics screening in human osteosarcoma U2-OS cells irradiated with a high dose (4 and 10 Gy). Radiation-induced expression in cells with silenced TP53 or RELA (coding the p65 NF-κB subunit) genes was analyzed by RNA-Seq while radiation-enhanced binding of p53 and RelA in putative regulatory regions was analyzed by ChIP-Seq, then selected candidates were validated by qPCR. Results We identified a subset of radiation-modulated genes whose expression was affected by silencing of both TP53 and RELA, and a subset of radiation-upregulated genes where radiation stimulated binding of both p53 and RelA. For three genes, namely IL4I1, SERPINE1, and CDKN1A, an antagonistic effect of the TP53 and RELA silencing was consistent with radiation-enhanced binding of both p53 and RelA. This suggested the possibility of a direct antagonistic (co)regulation by both factors: activation by NF-κB and inhibition by p53 of IL4I1, and activation by p53 and inhibition by NF-κB of CDKN1A and SERPINE1. On the other hand, radiation-enhanced binding of both p53 and RelA was observed in a putative regulatory region of the RRAD gene whose expression was downregulated both by TP53 and RELA silencing, which suggested a possibility of direct (co)activation by both factors. Conclusions Four new candidates for genes directly co-regulated by NF-κB and p53 were revealed

    Heat shock factor 1 (Hsf1) cooperates with estrogen receptor α (erα) in the regulation of estrogen action in breast cancer cells

    No full text
    Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2-stimulated cell scattering, and reduce adhesion to collagens and cell motility in ER-positive breast cancer cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1-deficient cells, in part due to the higher basal expression of E2-dependent genes, which correlates with the enhanced binding of unliganded ERα to chromatin in such cells. HSF1 and ERα can cooperate directly in E2-stimulated regulation of transcription, and HSF1 potentiates the action of ERα through a mechanism involving chromatin reorganization. Furthermore, HSF1 deficiency may increase the sensitivity to hormonal therapy (4-hydroxytamoxifen) or CDK4/6 inhibitors (palbociclib). Analyses of data from The Cancer Genome Atlas database indicate that HSF1 increases the transcriptome disparity in ER-positive breast cancer and can enhance the genomic action of ERα. Moreover, only in ER-positive cancers an elevated HSF1 level is associated with metastatic disease
    corecore