101 research outputs found
Divergent neuroactive steroid responses to stress and ethanol in rat and mouse strains: relevance for human studies
Neuroactive steroids are endogenous or synthetic steroids that rapidly alter neuronal excitability via membrane receptors, primarily GABAA receptors. Neuroactive steroids regulate many physiological processes including hypothalamic-pituitary-adrenal (HPA) axis function, ovarian cycle, pregnancy, aging, and reward. Moreover, alterations in neuroactive steroid synthesis are implicated in several neuropsychiatric disorders
The Allopregnanolone Response to Acute Stress in Females: Preclinical and Clinical Studies
The neuroactive steroid allopregnanolone ((3 alpha,5 alpha)-3-hydroxypregnan-20-one or 3 alpha,5 alpha-THP) plays a key role in the response to stress, by normalizing hypothalamic-pituitary-adrenal (HPA) axis function to restore homeostasis. Most studies have been conducted on male rats, and little is known about the allopregnanolone response to stress in females, despite that women are more susceptible than men to develop emotional and stress-related disorders. Here, we provide an overview of animal and human studies examining the allopregnanolone responses to acute stress in females in the context of stress-related neuropsychiatric diseases and under the different conditions that characterize the female lifespan associated with the reproductive function. The blunted allopregnanolone response to acute stress, often observed in female rats and women, may represent one of the mechanisms that contribute to the increased vulnerability to stress and affective disorders in women under the different hormonal fluctuations that occur throughout their lifespan. These studies highlight the importance of targeting neuroactive steroids as a therapeutic approach for stress-related disorders in women
Differential hypothalamic–pituitary–adrenal activation of the neuroactive steroids pregnenolone sulfate and deoxycorticosterone in healthy controls and alcohol-dependent subjects
Ethanol and the neuroactive steroids have interactive neuropharmacological effects and chronic ethanol administration blunts the ethanol-induced increase in neuroactive steroid levels in rodent plasma and brain. Few studies have explored neuroactive steroid regulation in alcohol-dependent human subjects. In fact, the regulation of adrenal neuroactive steroids has not been well defined in healthy controls. We thus explored the regulation of two neuroactive steroids, pregnenolone sulfate (PREG-S) and deoxycorticosterone, by pharmacological challenges to the hypothalamic-pituitary-adrenal (HPA) axis in healthy controls and one-month abstinent alcohol-dependent patients with co-occurring nicotine dependence. Plasma levels of PREG-S and deoxycorticosterone were measured by radioimmunoassay in controls and alcohol-dependent patients after challenges of naloxone, ovine corticotrophin releasing hormone (oCRH), dexamethasone, cosyntropin, and cosyntropin following high-dose dexamethasone. In addition, basal diurnal measures of both hormones were obtained. PREG-S plasma levels in healthy controls were increased by cosyntropin challenge (with and without dexamethasone pretreatment) and decreased by dexamethasone challenge. However, PREG-S concentrations were not altered by naloxone or oCRH challenges, suggesting that PREG-S is not solely regulated by hypothalamic or pituitary stimulation. Deoxycorticosterone, in contrast, is regulated by HPA challenge stimulation in a manner similar to cortisol. Alcohol-dependent patients had a blunted PREG-S response to cosyntropin (with and without dexamethasone pretreatment). Furthermore, the time to peak deoxycorticosterone response following oCRH was delayed in alcohol-dependent patients compared to controls. These results indicate that plasma PREG-S and deoxycorticosterone levels are differentially regulated by HPA axis modulation in human plasma. Further, alcohol-dependent patients show a blunted PREG-S response to adrenal stimulation and a delayed deoxycorticosterone response to oCRH challenge
Behavioral characterization of co-exposure to cannabinoids and hormonal contraceptives in female rats
Hormonal contraceptives are among the most widely used drugs by young healthy women to block ovulation and avoid pregnancy. They reduce the ovarian secretion of estradiol and progesterone, hormones that also modulate neuronal plasticity, cognitive functions, emotions and mood. Cannabis is the most commonly used illicit drug worldwide and its use is increasing among young women, many of which regularly take the "pill". Despite ev-idence of a bidirectional interaction between the endocannabinoid system and gonadal hormones, only very few studies have examined the consequences of cannabis consumption in young females under hormonal contra-ceptives treatment. To fill this gap, this study evaluated the behavioral effects of co-exposure to chronic 1) hormonal contraceptives, i.e., ethinyl estradiol (EE) plus levonorgestrel (LNG), one of the synthetic estrogen-progestin combinations of hormonal contraceptives, and 2) cannabinoid receptor agonist, i.e., WIN 55,212-2 (WIN), on motor activity, emotional state and cognitive functions in young adult female rats (8-11/experimental group). Hormonal and cannabinoid treatment started at post-natal day (PND) 52 and 56, respectively, while behavioral testing occurred between PND 84-95. The results show that chronic EE-LNG treatment, at doses (0.020 and 0.060 mg/rat, respectively) known to drastically reduce plasma progesterone levels, and the contextual exposure to WIN, at a dose (12.5 mu g/kg/infusion) known to be rewarding in the rat, alters the hor-monal milieu but does not cause further changes in locomotor activity compared to EE-LNG or WIN alone, and does not modify anxiety-like state (as measured by the elevated plus maze and the marble burying tests) and cognitive abilities (as measured by the novel object recognition and the prepulse inhibition tests) in young adult female rats. Although exposure to EE-LNG and WIN tends to increase the duration of immobility and to reduce the time spent swimming in the forced swimming test, there was not a significant additive effect suggestive of a depressive-like state. These findings allow deepening the current knowledge on the interaction between cannabinoid agonists and hormonal contraceptives and suggest that low, rewarding doses of cannabinoids do not significantly alter the motor and cognitive skills and do not induce anxiety or depressive-like states in females that use hormonal contraceptives
Ethanol-induced GABAA receptor alpha4 subunit plasticity involves phosphorylation and neuroactive steroids
GABAA receptors containing α4 subunits are widely implicated in acute ethanol sensitivity, and their spatial and temporal regulation prominently contributes to ethanol-induced neuroplasticity in hippocampus and cortex. However, it is unknown if α4-containing GABAA receptors in the thalamus, an area of high α4 expression, display similar regulatory patterns following ethanol administration, and if so, by which molecular mechanisms. In the current study, thalamic GABAA receptor α4 subunit levels were increased following a 6-week, but not a 2-week chronic ethanol diet. Following acute high-dose ethanol administration, thalamic GABAA receptor α4 subunit levels were regulated in a temporal fashion, as a decrease was observed at 2 hours followed by a delayed transient increase. PKCγ and PKCδ levels paralleled α4 temporal expression patterns following ethanol exposure. Initial decreases in α4 subunit expression were associated with reduced serine phosphorylation. Delayed increases in expression were not associated with a change in phosphorylation state, but were prevented by inhibiting neuroactive steroid production with the 5α-reductase inhibitor finasteride. Overall, these studies indicate that thalamic GABAA receptor α4 subunit expression following acute and chronic ethanol administration exhibits similar regulatory patterns as other regions and that transient expression patterns following acute exposure in vivo are likely dependent on both subunit phosphorylation state and neuroactive steroids
Failure of Acute Ethanol Administration to Alter Cerebrocortical and Hippocampal Allopregnanolone Levels in C57BL/6J and DBA/2J Mice
Ethanol (EtOH) administration increases brain allopregnanolone levels in rats, and this increase contributes to sensitivity to EtOH's behavioral effects. However, EtOH's effects on allopregnanolone may differ across species. We investigated the effects of acute EtOH administration on allopregnanolone, progesterone, and corticosterone levels in cerebral cortex and hippocampus of C57BL/6J and DBA/2J mice, 2 inbred strains with different alcohol sensitivity
Chronic treatment with hormonal contraceptives alters hippocampal BDNF and histone H3 post-translational modifications but not learning and memory in female rats
Hormonal contraceptives prevent ovulation with subsequent reduction in endogenous levels of estradiol, progesterone and its neuroactive metabolite allopregnanolone. These neurosteroids modulate several brain functions, including neuronal plasticity, cognition and memory. We hypothesized that hormonal contraceptives might affect synaptic plasticity, learning and memory, as a consequence of suppressed endogenous hormones levels. Female rats were orally treated with a combination of ethinyl estradiol (EE, 0.020 mg) and levonorgestrel (LNG, 0.060 mg) once daily for four weeks. Decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and altered histone H3 post-translational modifications (PTMs) were observed 14 days after discontinuation from chronic EE-LNG treatment. These effects were not accompanied by alterations in long-term plasticity at glutamatergic synapses, recognition memory in the novel object and novel place location tests, or spatial learning, memory, and behavioral flexibility in the Morris water maze test. Thus, decreased BDNF content does not affect synaptic plasticity and cognitive performance; rather it might be relevant for the occurrence of certain psychiatric symptoms, reported by some women using hormonal contraceptives. These results provide the first evidence of hippocampal epigenetic changes induced by hormonal contraceptives and complement previous studies on the neurobiological actions of hormonal contraceptives; the finding that effects of chronic EE-LNG treatment on BDNF content and histone PTMs are observed 14 days after drug discontinuation warrants further investigation to better understand the implications of such long-term consequences for women's health
Ethanol induction of steroidogenesis in rat adrenal and brain is dependent upon pituitary ACTH release and de novo adrenal StAR synthesis
The mechanisms of ethanol actions that produce its behavioral sequelae involve the synthesis of potent GABAergic neuroactive steroids, specifically the GABAergic metabolites of progesterone, (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP), and deoxycorticosterone, (3α,5α)-3,21-dihydroxypregnan-20-one. We investigated the mechanisms that underlie the effect of ethanol on adrenal steroidogenesis. We found that ethanol effects on plasma pregnenolone, progesterone, 3α,5α-THP and cortical 3α,5α-THP are highly correlated, exhibit a threshold of 1.5 g/kg, but show no dose dependence. Ethanol increases plasma adrenocorticotropic hormone (ACTH), adrenal steroidogenic acute regulatory protein (StAR), and adrenal StAR phosphorylation, but does not alter levels of other adrenal cholesterol transporters. The inhibition of ACTH release, de novo adrenal StAR synthesis or cytochrome P450 side chain cleavage activity prevents ethanol-induced increases in GABAergic steroids in plasma and brain. ACTH release and de novo StAR synthesis are independently regulated following ethanol administration and both are necessary, but not sufficient, for ethanol-induced elevation of plasma and brain neuroactive steroids. As GABAergic steroids contribute to ethanol actions and ethanol sensitivity, the mechanisms of this effect of ethanol may be important factors that contribute to the behavioral actions of ethanol and risk for alcohol abuse disorders
- …