8 research outputs found

    Molecular tools for metalloprotease sub-proteome generation

    No full text
    Collet M, Lenger J, Jenssen K, Plattner HP, Sewald N. Molecular tools for metalloprotease sub-proteome generation. Journal of Biotechnology. 2007;129(2):316-328.Molecular systems biology, the highly challenging post-genomic research area has many different facets like transcriptomics, proteomics, metabolomics, interactomics, modelling of cell cycles, etc. Among them, functional proteomics and interactomics represent exciting fields of research with high relevance towards biochemistry, medicinal chemistry, therapy, biotechnology and bioinformatics. The number of different proteins expressed by a cell under a set of certain conditions and the high dynamic range of these proteins together with different activation states require methods for sub-proteome generation on a mechanistic basis to reduce the amount of data. This can be achieved by application of tailor-made molecular tools that are based on inhibitors or, more generally, on protein ligands. Immobilised protein ligands proved to be suitable for the generation of sub-proteomes by affinity chromatography or by fishing using magnetic beads. Metalloproteases share a catalytically active metal ion in the active site. They can for example be addressed by hydroxamate type inhibitors like marimastat which are suitable for targeting active metalloproteases on a mechanistic basis aiming at the generation of an activity- and affinity-based sub-proteome. For such purposes, modified hydroxamate type inhibitors can be attached to a solid surface, e.g., chromatography material, magnetic beads, or a surface plasmon resonance sensor chip. The latter technique is a valuable tool for the optimisation of binding and elution conditions of biomolecules in affinity chromatography or on experiments using magnetic beads. Preliminary results are reported on the application of these probes in fishing experiments using magnetic beads. (c) 2007 Elsevier B.V. All rights reserved

    Characterization of a Chemical Affinity Probe Targeting Akt Kinases

    No full text
    Pachl F, Plattner P, Ruprecht B, Medard G, Sewald N, Kuster B. Characterization of a Chemical Affinity Probe Targeting Akt Kinases. Journal of Proteome Research. 2013;12(8):3792-3800.Protein kinases are key regulators of cellular processes, and aberrant function is often associated with human disease. Consequently, kinases represent an important class of therapeutic targets and about 20 kinase inhibitors (KIs) are in clinical use today. Detailed knowledge about the selectivity of KIs is important for the correct interpretation of their pharmacological and systems biological effects. Chemical proteomic approaches for systematic kinase inhibitor selectivity profiling have emerged as important molecular tools in this regard, but the coverage of the human kinome is still incomplete. Here, we describe a new affinity probe targeting Akt and many other members of the AGC kinase family that considerably extends the scope of KI profiling by chemical proteomics. In combination with the previously published kinobeads, the synthesized probe was applied to selectivity profiling of the Akt inhibitors GSK690693 and GSK2141795 in human cancer cells. The results confirmed the inhibition of all Akt isoforms and of a number of known as well as CDC42BPB as a novel putative target for GSK690693. This work also established, for the first time, the kinase selectivity profile of the clinical phase I drug GSK2141795 and identified PRKG1 as a low nanomolar kinase target as well as the ATP-dependent 5'-3' DNA helicase ERCC2 as a potential new non-kinase off-target

    Characterization of a Chemical Affinity Probe Targeting Akt Kinases

    No full text
    Protein kinases are key regulators of cellular processes, and aberrant function is often associated with human disease. Consequently, kinases represent an important class of therapeutic targets and about 20 kinase inhibitors (KIs) are in clinical use today. Detailed knowledge about the selectivity of KIs is important for the correct interpretation of their pharmacological and systems biological effects. Chemical proteomic approaches for systematic kinase inhibitor selectivity profiling have emerged as important molecular tools in this regard, but the coverage of the human kinome is still incomplete. Here, we describe a new affinity probe targeting Akt and many other members of the AGC kinase family that considerably extends the scope of KI profiling by chemical proteomics. In combination with the previously published kinobeads, the synthesized probe was applied to selectivity profiling of the Akt inhibitors GSK690693 and GSK2141795 in human cancer cells. The results confirmed the inhibition of all Akt isoforms and of a number of known as well as CDC42BPB as a novel putative target for GSK690693. This work also established, for the first time, the kinase selectivity profile of the clinical phase I drug GSK2141795 and identified PRKG1 as a low nanomolar kinase target as well as the ATP-dependent 5′-3′ DNA helicase ERCC2 as a potential new non-kinase off-target

    Characterization of a Chemical Affinity Probe Targeting Akt Kinases

    No full text
    Protein kinases are key regulators of cellular processes, and aberrant function is often associated with human disease. Consequently, kinases represent an important class of therapeutic targets and about 20 kinase inhibitors (KIs) are in clinical use today. Detailed knowledge about the selectivity of KIs is important for the correct interpretation of their pharmacological and systems biological effects. Chemical proteomic approaches for systematic kinase inhibitor selectivity profiling have emerged as important molecular tools in this regard, but the coverage of the human kinome is still incomplete. Here, we describe a new affinity probe targeting Akt and many other members of the AGC kinase family that considerably extends the scope of KI profiling by chemical proteomics. In combination with the previously published kinobeads, the synthesized probe was applied to selectivity profiling of the Akt inhibitors GSK690693 and GSK2141795 in human cancer cells. The results confirmed the inhibition of all Akt isoforms and of a number of known as well as CDC42BPB as a novel putative target for GSK690693. This work also established, for the first time, the kinase selectivity profile of the clinical phase I drug GSK2141795 and identified PRKG1 as a low nanomolar kinase target as well as the ATP-dependent 5′-3′ DNA helicase ERCC2 as a potential new non-kinase off-target

    Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy

    No full text
    Anselmetti D, Bartels FW, Becker A, et al. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy. Langmuir. 2008;24(4):1365-1370.Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future

    Effector-Stimulated Single Molecule Protein-DNA Interactions of a Quorum-Sensing System in Sinorhizobium meliloti

    Get PDF
    Intercellular communication by means of small signal molecules coordinates gene expression among bacteria. This population density-dependent regulation is known as quorum sensing. The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti Rm1021 possesses the Sin quorum sensing system based on N-acyl homoserine lactones (AHL) as signal molecules. Here, we demonstrate that the LuxR-type regulator ExpR binds specifically to a target sequence in the sinRI locus in the presence of different AHLs with acyl side chains from 8 to 20 carbons. Dynamic force spectroscopy based on the atomic force microscope provided detailed information about the molecular mechanism of binding upon activation by six different AHLs. These single molecule experiments revealed that the mean lifetime of the bound protein-DNA complex varies depending on the specific effector molecule. The small differences between individual AHLs also had a pronounced influence on the structure of protein-DNA interaction: The reaction length of dissociation varied from 2.6 to 5.8 Å. In addition, dynamic force spectroscopy experiments indicate that N-heptanoyl-DL-homoserine lactone binds to ExpR but is not able to stimulate protein-DNA interaction
    corecore