23 research outputs found

    Mechanical properties of nanosheets and nanotubes investigated using a new geometry independent volume definition

    Full text link
    Cross-sectional area and volume become difficult to define as material dimensions approach the atomic scale. This limits the transferability of macroscopic concepts such as Young's modulus. We propose a new volume definition where the enclosed nanosheet or nanotube average electron density matches that of the parent layered bulk material. We calculate the Young's moduli for various nanosheets (including graphene, BN and MoS2) and nanotubes. Further implications of this new volume definition such as a Fermi level dependent Young's modulus and out-of-plane Poisson's ratio are shown

    Predicting experimentally stable allotropes: Instability of penta-graphene

    Get PDF
    International audienceIn recent years, a plethora of theoretical carbon allotropes have been proposed, none of which has been experimentally isolated. We discuss here criteria that should be met for a new phase to be potentially experimentally viable. We take as examples Haeckelites, 2D networks of sp2-carbon–containing pentagons and heptagons, and “penta-graphene,” consisting of a layer of pentagons constructed from a mixture of sp2- and sp3-coordinated carbon atoms. In 2D projection appearing as the “Cairo pattern,” penta-graphene is elegant and aesthetically pleasing. However, we dispute the author’s claims of its potential stability and experimental relevanc

    Ripple edge engineering of graphene nanoribbons

    Full text link
    It is now possible to produce graphene nanoribbons (GNRs) with atomically defined widths. GNRs offer many opportunities for electronic devices and composites, if it is possible to establish the link between edge structure and functionalisation, and resultant GNR properties. Switching hydrogen edge termination to larger more complex functional groups such as hydroxyls or thiols induces strain at the ribbon edge. However we show that this strain is then relieved via the formation of static out-of-plane ripples. The resultant ribbons have a significantly reduced Young's Modulus which varies as a function of ribbon width, modified band gaps, as well as heterogeneous chemical reactivity along the edge. Rather than being the exception, such static edge ripples are likely on the majority of functionalized graphene ribbon edges.Comment: Supplementary Materials availabl

    Low energy graphene edge termination via small diameter nanotube formation

    Get PDF
    We demonstrate that free graphene sheet edges can curl back on themselves,reconstructing as nanotubes. This results in lower formation energies than any other non-functionalised edge structure reported to date in the literature. We determine the critical tube size and formation barrier and compare with density functional simulations of other edge terminations including a new reconstructed Klein edge. Simulated high resolution electron microscopy images show why such rolled edges may be difficult to detect. Rolled zigzag edges serve as metallic conduction channels, separated from the neighbouring bulk graphene by a chain of insulating sp3^3-carbon atoms, and introduce Van Hove singularities into the graphene density of states.Comment: To appear in Phys. Rev. Let

    Stable hydrogenated graphene edge types: Normal and reconstructed Klein edges

    Get PDF
    Hydrogenated graphene edges are assumed to be either armchair, zigzag or a combination of the two. We show that the zigzag is not the most stable fully hydrogenated structure along the direction. Instead hydrogenated Klein and reconstructed Klein based edges are found to be energetically more favourable, with stabilities approaching that of armchair edges. These new structures "unify" graphene edge topology, the most stable flat hydrogenated graphene edges always consisting of pairwise bonded C2H4 edge groups, irrespective the edge orientation. When edge rippling is included, CH3 edge groups are most stable. These new fundamental hydrogen terminated edges have important implications for graphene edge imaging and spectroscopy, as well as mechanisms for graphene growth, nanotube cutting, and nanoribbon formation and behaviour.Fundação para a CiĂȘncia e a Tecnologia (FCT

    Mechanical properties of nanosheets and nanotubes investigated using a new geometry independent volume definition

    Get PDF
    Abstract Cross-sectional area and volume become difficult to define as material dimensions approach the atomic scale. This limits the transferability of macroscopic concepts such as Young's modulus. We propose a new volume definition where the enclosed nanosheet or nanotube average electron density matches that of the parent layered bulk material. We calculate the Young's moduli for various nanosheets (including graphene, BN and MoS 2 ) and nanotubes. Further implications of this new volume definition such as a Fermi level dependent Young's modulus and out-of-plane Poisson's ratio are shown

    Pattern formation on carbon nanotube surfaces

    Get PDF
    Calculations of fluorine binding and migration on carbon nanotube surfaces show that fluorine forms varying surface superlattices at increasing temperatures. The ordering transition is controlled by the surface migration barrier for fluorine atoms to pass through next neighbor sites on the nanotube, explaining the transition from semi-ionic low coverage to covalent high coverage fluorination observed experimentally for gas phase fluorination between 200 and 250°C. The effect of solvents on fluorine binding and surface diffusion is explored

    Radiation-induced defect reactions in tin-doped Ge crystals

    No full text
    We have recently shown that Sn impurity atoms are effective traps for vacancies (V) in Ge:Sn crystals irradiated with MeV electrons at room temperature [V.P. Markevich etal., J. Appl. Phys. 109 (2011) 083705]. A hole trap with 0.19 eV activation energy for hole emission to the valence band (Eh) has been assigned to an acceptor level of the Sn-V complex. In the present work electrically active defects introduced into Ge:Sn+P crystals by irradiation with 6 MeV electrons and subsequent isochronal annealing in the temperature range 50-300 °C have been studied by means of transient capacitance techniques and ab-initio density functional modeling. It is found that the Sn-V complex anneals out upon heat-treatments in the temperature range 50-100 °C. Its disappearance is accompanied by the formation of vacancy-phosphorus (VP) centers. The disappearance of the VP defect upon thermal annealing in irradiated Sn-doped Ge crystals is accompanied by the effective formation of a defect which gives rise to a hole trap with Eh = 0.21 eV and is more thermally stable than other secondary radiation-induced defects in Ge:P samples. This defect is identified as tinvacancy- phosphorus (SnVP) complex. It is suggested that the effective interaction of the VP centers with tin atoms and high thermal stability of the SnVP complex can result in suppression of transient enhanced diffusion of phosphorus atoms in Ge. © (2011) Trans Tech Publications, Switzerland

    The contribution made by lattice vacancies to the Wigner effect in radiation-damaged graphite

    No full text
    Models for radiation damage in graphite are reviewed and compared, leading to a re-examination of the contribution made by vacancies to annealing processes. A method based on density functional theory, using large supercells with orthorhombic and hexagonal symmetry, is employed to calculate properties and behaviour of lattice vacancies and displacement defects. It is concluded that annihilation of intimate Frenkel defects marks the onset of recovery in electrical resistivity, which occurs when the temperature exceeds about 160 K. Migration of isolated monovacancies is estimated to have an activation energy Ea ≈ 1.1 eV. Coalescence into divacancy defects occurs in several stages, with different barriers at each stage, depending on the path. The formation of pairs ultimately yields up to 8.9 eV energy, which is nearly 1.0 eV more than the formation energy for an isolated monovacancy. Processes resulting in vacancy coalescence and annihilation appear to be responsible for the main Wigner energy release peak in radiation-damaged graphite, occurring at about 475 K.Validerad; 2013; Bibliografisk uppgift: Article no 135403; 20130305 (latham
    corecore