390 research outputs found
Extended Rasch Modeling: The eRm Package for the Application of IRT Models in R
Item response theory models (IRT) are increasingly becoming established in social science research, particularly in the analysis of performance or attitudinal data in psychology, education, medicine, marketing and other fields where testing is relevant. We propose the R package eRm (extended Rasch modeling) for computing Rasch models and several extensions. A main characteristic of some IRT models, the Rasch model being the most prominent, concerns the separation of two kinds of parameters, one that describes qualities of the subject under investigation, and the other relates to qualities of the situation under which the response of a subject is observed. Using conditional maximum likelihood (CML) estimation both types of parameters may be estimated independently from each other. IRT models are well suited to cope with dichotomous and polytomous responses, where the response categories may be unordered as well as ordered. The incorporation of linear structures allows for modeling the effects of covariates and enables the analysis of repeated categorical measurements. The eRm package fits the following models: the Rasch model, the rating scale model (RSM), and the partial credit model (PCM) as well as linear reparameterizations through covariate structures like the linear logistic test model (LLTM), the linear rating scale model (LRSM), and the linear partial credit model (LPCM). We use an unitary, efficient CML approach to estimate the item parameters and their standard errors. Graphical and numeric tools for assessing goodness-of-fit are provided.
Multidimensional Scaling Using Majorization: SMACOF in R
In this paper we present the methodology of multidimensional scaling problems (MDS) solved by means of the majorization algorithm. The objective function to be minimized is known as stress and functions which majorize stress are elaborated. This strategy to solve MDS problems is called SMACOF and it is implemented in an R package of the same name which is presented in this article. We extend the basic SMACOF theory in terms of configuration constraints, three-way data, unfolding models, and projection of the resulting configurations onto spheres and other quadratic surfaces. Various examples are presented to show the possibilities of the SMACOF approach offered by the corresponding package.
An Introduction to the Special Volume on "Psychometrics in R''
This special volume presents a select number of psychometric techniques, many of them original, and their implementation in R packages.
A General Framework for Multivariate Analysis with Optimal Scaling: The R Package aspect
In a series of papers De Leeuw developed a general framework for multivariate analysis with optimal scaling. The basic idea of optimal scaling is to transform the observed variables (categories) in terms of quantifications. In the approach presented here the multivariate data are collected into a multivariable. An aspect of a multivariable is a function that is used to measure how well the multivariable satisfies some criterion. Basically we can think of two different families of aspects which unify many well-known multivariate methods: Correlational aspects based on sums of correlations, eigenvalues and determinants which unify multiple regression, path analysis, correspondence analysis, nonlinear PCA, etc. Non-correlational aspects which linearize bivariate regressions and can be used for SEM preprocessing with categorical data. Additionally, other aspects can be established that do not correspond to classical techniques at all. By means of the R package aspect we provide a unified majorization-based implementation of this methodology. Using various data examples we will show the flexibility of this approach and how the optimally scaled results can be represented using graphical tools provided by the package.
A Framework to Interpret Nonstandard Log-Linear Models
The formulation of log-linear models within the framework of
Generalized Linear Models offers new possibilities in modeling categorical
data. The resulting models are not restricted to the analysis of contingency
tables in terms of ordinary hierarchical interactions. Such models are considered
as the family of nonstandard log-linear models. The problem that
can arise is an ambiguous interpretation of parameters. In the current paper
this problem is solved by looking at the effects coded in the design matrix
and determining the numerical contribution of single effects. Based on these
results, stepwise approaches are proposed in order to achieve parsimonious
models. In addition, some testing strategies are presented to test such (eventually
non-nested) models against each other. As a result, a whole interpretation
framework is elaborated to examine nonstandard log-linear models in depth
Analysis of Multivariate Social Science Data (2nd Edition)
Abstracts not available for BookReview
The Rasch Sampler
The Rasch sampler is an efficient algorithm to sample binary matrices with given marginal sums. It is a Markov chain Monte Carlo (MCMC) algorithm. The program can handle matrices of up to 1024 rows and 64 columns. A special option allows to sample square matrices with given marginals and fixed main diagonal, a problem prominent in social network analysis. In all cases the stationary distribution is uniform. The user has control on the serial dependency.
Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage
Abstracts not available for BookReview
- …