
JSS Journal of Statistical Software
May 2007, Volume 20, Issue 4. http://www.jstatsoft.org/

The Rasch Sampler

Norman D. Verhelst
National Institute for

Educational Measurement (Cito)

Reinhold Hatzinger
Wirtschaftsuniversität Wien

Patrick Mair
Wirtschaftsuniversität Wien

Abstract

The Rasch sampler is an efficient algorithm to sample binary matrices with given
marginal sums. It is a Markov chain Monte Carlo (MCMC) algorithm. The program can
handle matrices of up to 1024 rows and 64 columns. A special option allows to sample
square matrices with given marginals and fixed main diagonal, a problem prominent in
social network analysis. In all cases the stationary distribution is uniform. The user has
control on the serial dependency.

Keywords: Markov chain Monte Carlo, binary matrices, fixed marginals, nonparametric tests,
Rasch model.

1. Introduction

Parameter estimates in the Rasch model only depend on the marginal totals of the data
matrix that is used for the estimation. From this it follows that, if the model is valid, all
binary matrices with the same marginals as the observed one are equally likely. For any
statistic of the data matrix, one can approximate the null distribution, i.e., the distribution
if the Rasch model is valid, by taking a random sample from the collection of equally likely
data matrices and constructing the observed distribution of the statistic (Besag and Clifford
1989). One can then simply determine the exceedance probability of the statistic in the
observed sample (its p-value), and thus construct a non-parametric test of the Rasch model.
The accuracy of the observed (i.e., simulated) distribution will depend on the sample size,
and this in turn will only depend on the time one can or wants to spend to draw the random
sample.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6303087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 The Rasch Sampler

The MCMC methodology for this problem has been used by a number of authors (Connor and
Simberloff 1979; Besag and Clifford 1989; Roberts and Stone 1990; Guttorp 1995; Rao, Jana,
and Bandyopadhyay 1996; Ponocny 2001). They all use the same basic approach, henceforth
referred to as the classical approach, which can be briefly characterized as follows:

1. All binary matrices with given marginals, the sample space, are considered as states in
a finite Markov chain.

2. From any state, the matrix At say, the process can move to any state of a subset of the
sample space. This subset will be called the neighborhood of the matrix At. This will
be described in more detail in the next section.

(a) The neighborhood is relatively small compared to the size of the sample space.

(b) The actual choice for moving from the current state to the next is by random
sampling from the neighborhood.

3. The stationary distribution is not uniform: the probability of each matrix is proportional
to the size of its neighborhood. Rao et al. (1996) offer some heuristics to approach the
uniform distribution.

The algorithm that is implemented in the Rasch sampler differs in three important ways from
the classical MCMC algorithms:

1. The neighborhoods of the states are much larger than in the classical approach.

2. The choice of the next state is based on importance sampling, not on random sampling
from the neighborhood.

3. The stationary distribution is uniform by an application of the Metropolis-Hastings
algorithm to the basic transition matrix.

These three issues will be discussed in three separate sections. In a separate section the
algorithm will be extended to the case of square matrices with fixed diagonals. Proofs of
propositions will be omitted since these are published elsewhere (Verhelst 2007).

2. Tetrad and binomial neighborhoods

Let Σrc be the sample space, i.e., the set of all binary matrices with row totals given by the
n-dimensional vector r, and column totals given by the k-dimensional vector c. To exclude the
possibility that Σrc = ∅, it will be assumed that there exists a matrix with these marginals.
Usually this will be an observed matrix, that will be denoted as A0.

2.1. The case of n× 2 matrices

The concepts of tetrad and binomial neighborhoods will be introduced by considering the
special case of matrices with two columns. Since in such matrices each row consists of one
out of four possible patterns, such a matrix, A say, can be summarized like in Table 1.

Journal of Statistical Software 3

pattern frequency
0 0 u
1 1 v
1 0 a
0 1 b

Table 1: Summary of a n× 2 matrix.

A tetrad is defined as a 2×2 submatrix of A (by selecting 2 rows) that has one of the following
forms: (

1 0
0 1

)
or

(
0 1
1 0

)
(1)

A tetrad transformation consists of changing either form of (1) into the other for a single
tetrad. By such a transformation the row and column totals of the matrix do not change.
The tetrad neighborhood of matrix A is the set of all matrices that can be obtained by a
tetrad transformation on A. This set will be denoted by AT (A). Notice that A itself does not
belong to its tetrad neighborhood. From Table 1, it is clear that

#AT (A) = a× b. (2)

By a finite sequence of tetrad transformations all matrices belonging to Σrc can be reached.

In the matrix represented by Table 1, there are m = a + b rows with a row total of one. A
binomial operation consists of assigning a one to the first position and a zero to the second
position for a of these m rows. The b other rows have the complementary pattern. By such
an operation on A, the marginals do not change. A binomial transform of A is a matrix that
results from a binomial operation on A and that is not equal to A. The binomial neighborhood
of A is defined as the set of binomial transforms of A, and denoted by AB(A). From Table 1
it will be clear that

#AB(A) =
(

a + b

a

)
− 1 =

(
m

a

)
− 1, (3)

and that
AT (A) ⊂ AB(A) if a, b > 1, (4)

i.e., a tetrad transform is a binomial transform.

2.2. The general case of n× k matrices.

For each of the
(
k
2

)
column pairs of a matrix A ∈ Σrc, a submatrix consisting of these two

columns can be formed, and a table like Table 1 can be constructed. Applying a binomial
transformation on this submatrix, and putting the transformed columns back in the original
matrix will be called a binomial transformation of the original matrix. The notation is adapted
as follows. Column pairs are denoted by the ordered pair (i, j), (i < j ≤ k). The number of
rows in the submatrix having a row total of one is denoted as mij(A), the number of these
rows having a one in column i is denoted as aij(A) and bij(A) = mij(A)−aij(A). The explicit
reference to the matrix A will be dropped if it is clear from the context which matrix is referred
to. The set of matrices that can be constructed by applying a binomial transformation on the
column pair (i, j) will be called the Bij neighborhood of A and will be denoted as A(i,j)

B (A).

4 The Rasch Sampler

A similar notation can be applied for tetrad neighborhoods: the Tij neighborhood of A is the
set of matrices that can be formed by a tetrad transformation on the column pair (i, j) of A,
and is denoted as A(i,j)

T (A). Next, B- and T -neighborhoods are defined.

Definition 1. The binomial neighborhood (or B-neighborhood) of matrix A ∈ Σrc is

AB(A) =
⋃
(i,j)

A(i,j)
B (A).

Definition 2. The tetrad neighborhood (or T -neighborhood) of matrix A ∈ Σrc is

AT (A) =
⋃
(i,j)

A(i,j)
T (A).

An easy to prove but important result is given in Verhelst (2007).

Proposition 1 For any two column pairs (i, j) and (g, h) of A ∈ Σrc with (i, j) 6= (g, h),
it holds that A(i,j)

B (A) ∩ A(g,h)
B (A) = ∅.

A similar result holds for tetrad neighborhoods:

Corollary 1. For any two column pairs (i, j) and (g, h) of A ∈ Σrc with (i, j) 6= (g, h), it
holds that A(i,j)

T (A) ∩ A(g,h)
T (A) = ∅.

It may be the case that for a column pair (i, j) it holds that aij = 0 or bij = 0, in which case
there are no tetrads for this pair.

Definition 3. The column pair (i, j) is a Guttman pair if aij × bij = 0. If aij × bij > 0,
the pair will be called regular.

Definition 4. The k2-measure of A ∈ Σrc is defined as k2(A) = #{(i, j) : i < j ≤ k, (i, j)
is a regular pair.

In Verhelst (2007), a simple but useful proposition is proved:

Proposition 2. If k2(A) = 0 for some A ∈ Σrc, then #Σrc = 1 and Σrc = {A}.
From (3), Proposition 1, and Definition 4, it is easily deduced that

#AB(A) =
∑
i<j

#A(i,j)
B (A) =

∑
aij×bij>0

(
mij

aij

)
− k2(A). (5)

and using (2) and Corollary 1 gives

#AT (A) =
∑
i<j

#A(i,j)
T (A) =

∑
i<j

aij × bij (6)

Journal of Statistical Software 5

Tetrad Binomial estimate of #Σrc

Case 1 1.23× 106 7.91× 1040 7.83× 101774

Case 2 1.12× 106 6.00× 1040 2.28× 101709

Table 2: Sizes of neighborhoods.

In the testing phase of the program, two artificial data matrices with 300 rows and 30 columns
were created. In Table 2, the sizes of their tetrad and binomial neighborhoods are displayed,
together with an estimate of the sizes of the two sample spaces. For details, see Verhelst
(2007); for the estimate of the size of the sample space, see also Chen, Diaconis, Holmes, and
Liu (2005).

3. The basic transition matrix of the Markov chain

The transition matrix of a Markov chain, P = (pst), contains the transition probabilities,
where pst is the probability that the next state is s given that the current state is state t. In
the classical approach, pst is defined as

pst =

 [#AT (At)]
−1 if As ∈ AT (At),

0 otherwise.

representing simple random sampling from the tetrad neighborhood. It is well know that this
Markov chain is irreducible, and therefore has a stationary distribution (Rao et al. 1996).
Using binomial neighborhoods, a similar sampling scheme can be followed, by sampling ran-
domly from the binomial neighborhood of the current matrix. It turns out, however, that
this sampling scheme is not very efficient. The variability of #A(i,j)

B (At) over column pairs
can be considerable, with the consequence that a binomial transformation is applied to the
same column pair for very long sequences of transitions. To avoid this, a transition matrix
Q = (qst) for the Markov chain is defined as

qst = wst × dt, (7)

where
dt = [k2(At)]−1 (8)

and

wst =

[(

mij

aij

)
− 1

]−1

if As ∈ A(i,j)
B (At),

0 if As /∈ AB(At).

(9)

Notice that dt in (8) is not well defined only in case k2(At) = 0, but then, from Proposition 2,
#Σrc = 1, and the problem is solved. This trivial case will be left out of consideration. Notice
also that (9) is well defined and unambiguous because of Proposition 1: if As ∈ AB(At), then
there exists exactly one pair of columns, (i, j) say, such that As ∈ A(i,j)

B (At). The stationary
distribution of the Markov chain defined by (7) is given in the Proposition 3. The proof is
given in Verhelst (2007).

6 The Rasch Sampler

Proposition 3. Qπ = π with πt ∝ k2(At), (t = 1, . . . ,#Σrc).

The Markov chain can be implemented, using the following algorithm.

Algorithm 1. Importance sampling from the binomial neighborhood of A

1. Select randomly a pair of columns from the k2(A) regular column pairs of A.

2. Apply a random binomial operation to the selected pair. If the resulting matrix equals
A, repeat step 2; otherwise the resulting matrix is the new state.

Notice that all matrices from AB(A) have a positive probability of being sampled, but the
probabilities are not equal, because the probability that column pair (i, j) is sampled is
[k2(A)]−1 if A(i,j)

B (A) /∈ ∅, but otherwise independent of #A(i,j)
B (A).

4. The Metropolis-Hastings algorithm

Extensive experimentation with Algorithm 1 showed that the variability in the k2-measures
is often very small but not zero, so that the stationary distribution of Q is not uniform. The
Metropolis-Hastings algorithm is an elegant procedure to make the stationary distribution
uniform. In general, the algorithm transforms a defined transition matrix, Q say, into a
transition matrix Q∗ with a prespecified vector π as stationary vector. The algorithm is
defined as (see, e.g., Tanner (1994) for a concise description)

q∗st = αst × qst, (s 6= t), (10)

where

αst =

min

[
πsqts

πtqst
, 1

]
if πtqst > 0,

1 if πtqst = 0.

(11)

The diagonal elements are given by

q∗tt = 1−
∑
s 6=t

q∗st.

If we want the uniform stationary distribution, then πs/πt = 1. Taking Q as defined by (7),
because wst = wts (Verhelst 2007), we obtain that

qts

qst
=

k2(At)
k2(As)

,

whence we can easily deduce our final result:

Journal of Statistical Software 7

Algorithm 2. Importance sampling and Metropolis-Hastings

1. Select randomly a pair of columns from the k2(A) regular column pairs of A.

2. Apply a random binomial operation to the selected pair, yielding A∗.

(a) If A∗ = A, repeat step 2.

(b) Otherwise,

i. If k2(A∗) ≤ k2(A), the new state is A∗,

ii. If k2(A∗) > k2(A), then the new state remains A with probability 1−k2(A)/k2(A∗),
otherwise the new state is A∗.

5. Square matrices with fixed diagonals

In social network theory, often a square incidence matrix, representing a binary asymmetric
relation has to be analyzed. Having a tool to sample from the set of all binary matrices with
given marginals and with the main diagonal values kept at their (arbitrary) value is valuable
for social network research (Wasserman 1977). In this section we discuss an adaptation of
Algorithm 2 to fit these cases.

The adaptation is relatively simple, thanks to a nice theorem of Rao et al. (1996). They start
from a simple observation. In a 3×3 subtable of the matrix, formed by taking out three rows
and the corresponding columns, the following two patterns, called alternating hexagons, can
occur: ∗ 1 0

0 ∗ 1
1 0 ∗

 or

 ∗ 0 1
1 ∗ 0
0 1 ∗

 , (12)

where ∗ indicates a fixed value. Notice that in neither of the two tables there is a tetrad,
and yet, the marginals of the table do not change when an alternating hexagon is replaced
by its complement, i.e., by a hexagon transformation. But this implies that in general not all
matrices can be constructed by a finite sequence of tetrad transformations.

In their Theorem 2, Rao et al. (1996) prove that in case of a square binary matrix with fixed
marginals and a fixed main diagonal, all matrices can be constructed from any other matrix
by a finite sequence of tetrad transformations and hexagon operations.

Now it is easy to extend Algorithm 2 to apply also to this case. We do this by a number of
easy to check features of the neighborhood:

1. The definition of the binomial neighborhood has to be adapted a little bit in a straight-
forward manner, in the sense that mij is the number of rows in column pair (i, j) that
are of the form (0, 1) or (1, 0). Patterns containing a fixed value are not counted but
are treated in the same way as the patterns (0, 0) or (1, 1).

2. If we apply a single hexagon operation to matrix A, exactly three columns of the ma-
trix are changed, so that the resulting matrix cannot belong to the tetrad or binomial
neighborhood of A.

8 The Rasch Sampler

3. So in a natural way we can define the hexagon neighborhood of a matrix A as the
set of matrices that can be constructed with a single hexagon transformation. This
neighborhood will denoted as AH(A).

4. Since a hexagon operation changes three columns of the matrix, and a tetrad or a
binomial transformation change two columns, it is clear that

AH(A) ∩ AT (A) = AH(A) ∩ AB(A) = ∅,

so that the combined tetrad-hexagon or binomial-hexagon neighborhoods are partitioned
much in the same way as the tetrad or binomial neighborhoods.

5. Next we define for all A ∈ Σrc, the k3-measure as

k3(A) =

k2(A) if #AH(A) = 0,

k2(A) + 1 otherwise.
(13)

Without giving all the details, we can describe an algorithm which is very closely related to
Algorithm 2.

Algorithm 3. Importance sampling from the combined binomial-hexagon neigh-
borhood of A

1. If k2(A) = k3(A), apply Algorithm 2.

2. If k2(A) < k3(A), draw a random number u uniformly from (0, 1];

(a) if u ≤ [k3(A)]−1, apply the hexagon operation to a randomly drawn alternating
hexagon from the # AH(A) alternating hexagons in A, yielding matrix A∗. If
k3(A) < k3(A∗), select A as the next matrix with probability 1−k3(A)/k3(A∗), else
select A∗.

(b) else, apply Algorithm 2.

6. An implementation in R: The RaschSampler package

6.1. General structure

The workhorse of the RaschSampler is a FORTRAN 95 subroutine which implements the
MCMC algorithm described in this paper as an R (R Development Core Team 2007) pack-
age. It is called from the R (wrapper) function rsampler. Apart from several parameters
controlling the algorithm (to be explained in Section 6.2) it expects a binary matrix (usually
the reponses from n subjects to k items, or a k × k adjacency matrix) as input and returns
the generated matrices in encoded form. The output is stored in a list together with all
control parameters to allow further operations (calculating statistics, saving the results of the
sampler, replicating the sampling process, etc.). To make use of these sampled matrices the
user has to define an appropriate R function that operates on each of the generated matrices,

Journal of Statistical Software 9

e.g., calculating a statistic (for convenience the RaschSampler package contains an example
user function phi which calculates the range of all inter-column correlations, denoted as Rϕ

henceforth). The second main function of the package is rstats, a (wrapper) function which
decodes the sampled matrices and passes them to the user defined function in turn. The
output of rstats is a list with the same number of elements as the number of matrices passed
to it. Each element contains the output from the user defined function, e.g., the statistic(s)
for a (sampled) matrix.

All other functions in the package are utility functions, for defining the control parameters,
printing the status of the output lists, and extracting some of the generated matrices.

6.2. User control

The use of MCMC methodology has two serious drawbacks. The first one is that the stationary
distribution is an asymptotic distribution, and one can never be sure to sample from this
distribution after a finite number of steps through the sample space. The second drawback
has to do with serial dependency: even when the stationary distribution has been reached,
a sequence of draws from the sample space will show autocorrelations, meaning that the
sampled matrices are not independent of each other, even if their distribution is uniform.

To face these two problems, two practical tools are provided in the program, by means of the
two tuning parameters burn_in and step. These are explained in turn.

If Q is a transition matrix of a Markov chain with a uniform stationary distribution, then
Q`, ` = 1, 2, . . .also has the same stationary vector. In practice, this means that ` steps
governed by Q will be carried out before the resulting matrix is considered as a sampled
matrix. As ` increases, the serial dependency will decrease. In the program the value of ` is
at the discretion of the user by the tuning parameter step.

To allow the process to approximate its stationary distribution, it is customary to use a
number of idle steps through the sample space, i.e. sampling matrices that are not used to
compute the statistic(s) of interest. This number is under the control of the user by the tuning
parameter burn_in. Notice, however, that the number of matrices generated before the real
sampling starts equals the product of the two parameters burn_in and step.

After the burn in period, a number of matrices are sampled, using Q`. This number is the
sample size and is governed by the tuning parameter n_eff.

If the program is run, the total number of matrices generated equals

step * (burn_in + n_eff)

However, on output the resulting list contains only n_eff + 1 (encoded) matrices, i.e., n_eff
sampled plus the original input matrix (in position 1).

The other user controls concern the seed of the random number generator (the default value
of zero generates a random seed based on the system time, the used seed value is returned
from the sampler) and the parameter tfixed that enables the sampling of square matrices
with a fixed diagonal (e.g., adjacency matrices).

6.3. Some examples

For the first example we use a (ficitious) data matrix xmpl with n = 300 rows and k = 30
columns provided in the RaschSampler package.

10 The Rasch Sampler

R> data("xmpl")

The default control parameters can be obtained by calling the control function without any
arguments.

R> ctr <- rsctrl()

R> summary(ctr)

Current sampler control specifications in ctr :
burn_in = 100
n_eff = 100
step = 16
seed = 0
tfixed = FALSE

We want to generate 5 random matrices and use a random starting value for the random
number generator. The control object is redefined by

R> ctr <- rsctrl(n_eff = 5, seed = 0)

R> summary(ctr)

Current sampler control specifications in ctr :
burn_in = 100
n_eff = 5
step = 16
seed = 0
tfixed = FALSE

We call the sampler, store the results in result1 and print summary information.

R> result1 <- rsampler(xmpl, ctr)

R> summary(result1)

Status of object result1 after call to RSampler:
n = 300
k = 30
burn_in = 100
n_eff = 5
step = 16
seed = 690790426
tfixed = FALSE
n_tot = 6
outvec contains 1800 elements

n_tot specifies the number of encoded matrices stored in result1, outvec contains these
matrices, the first is always the original input matrix. The matrices are stored row-wise as
integers (one integer is needed for k ≤ 32, two integers for 33 < k ≤ 64, for further details see

Journal of Statistical Software 11

the package help files). Since n = 300, k < 32, and five matrices have been sampled outvec
has 300 * (5 + 1) elements. The seed has been set to 690790426.
To calculate statistics for these matrices we use rstats with the sampling result and the
(predefined) user function phi as arguments and store the results in stat1:

R> stat1 <- rstats(result1, phi)

The output is

R> unlist(stat1)

1 2 3 4 5 6
0.3517041 0.3101368 0.3615032 0.4026465 0.3178987 0.3102170

As mentioned in Section 6.1 the output from rstats returns the values (statistics) from
the user defined function specified as the second argument in the call of rstats(). For this
example, we can see that the range of all item intercorrelations for the (fictitious) data matrix,
i.e. Rϕ = 0.3517041, is of similar magnitude as the corresponding values for the five sampled
matrices (stored in positions 2 – 6).
A utility function rsextrobj has been defined to allow for extracting certain parts from the
sampling result. For example, if we want to perform the statistics function only to the first
two generated matrices we might use

R> resultparts <- rsextrobj(result1, start = 2, end = 3)

R> summary(resultparts)

Status of extracted object resultparts :
n = 300
k = 30
burn_in = 100
n_eff = 2
step = 16
seed = 123
tfixed = FALSE
n_tot = 2
outvec contains 600 elements

R> stat1parts <- rstats(resultparts, phi)

R> unlist(stat1parts)

1 2
0.3661533 0.3874665

The summary shows that resultparts is an extracted object and that the number of con-
tained matrices is n_tot = 2. Since n_eff, the number of sampled matrices is also 2 we know
that the original matrix is no longer contained in the list resultparts.
Original sampling results as well as extracted parts can be saved and reloaded for later usage,
e.g., by

12 The Rasch Sampler

R> save(stat1parts, file = "some.RSobj")

R> again <- load("some.RSobj")

The second example examines the quantile for the statistic Rϕ (as implemented in the example
user function phi) for a larger data matrix. The data matrix xmplbig is provided in in the
RaschSampler package and has n = 1024 rows and k = 64 comlumns.

R> data("xmplbig")

The sampling process is specified to generate n_eff = 1000 matrices and the starting value
for the random number generator is fixed to seed = 987654321. The other control parameters
are set to their default values.

R> ctr <- rsctrl(n_eff = 1000, seed = 987654321)

R> summary(ctr)

Current sampler control specifications in ctr :
burn_in = 100
n_eff = 1000
step = 16
seed = 987654321
tfixed = FALSE

Generating the 1000 random matrices by

R> result2 <- rsampler(xmplbig, ctr)

0.24 0.26 0.28 0.30 0.32

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rphi_sampled

qu
an

til
es

Figure 1: A quantile plot of the Rϕ statistics for the generated matrices, n_eff = 1000. The
dashed lines indicate the position of the Rϕ statistic for the input matrix.

Journal of Statistical Software 13

took 45 seconds on an 1.6GHz Intel(R) Pentium(R) M processor.

After applying the statistics function

R> stat2 <- rstats(result2, phi)

the results might be displayed graphically as shown in Figure 1 using some R commands such
as

R> stat2 <- unlist(stat2)

R> rphi_obs <- stat2[1]

R> rphi_sampled <- sort(stat2[-1])

R> quantiles <- seq(0.001, 1, by = 0.001)

R> plot(rphi_sampled, quantiles, type = "l")

R> ycoord <- length(rphi_sampled[rphi_sampled <= rphi_obs])/1000

R> abline(h = ycoord, lty = 2)

R> abline(v = rphi_obs, lty = 2)

References

Besag J, Clifford P (1989). “Generalized Monte Carlo Significance Tests.” Biometrika, 76,
633–642.

Chen Y, Diaconis P, Holmes S, Liu J (2005). “Sequential Monte Carlo Methods for Statistical
Analysis of Tables.” Journal of the American Statistical Association, 100, 109–120.

Connor E, Simberloff D (1979). “The Assembly of Species Communities: Chance or Compe-
tition.” Ecology, 60, 1132–1140.

Guttorp P (1995). Stochastic Modeling of Scientific Data. Chapman and Hall, London.

Ponocny I (2001). “Nonparametric Goodness-Of-Fit Tests for the Rasch Model.” Psychome-
trika, 66, 437–460.

Rao A, Jana R, Bandyopadhyay S (1996). “A Markov Chain Monte Carlo Method for Gen-
erating Random (0, 1)-Matrices with Given Marginals.” Sankhya A, 58, 225–242.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Roberts A, Stone L (1990). “Island Sharing by Archipelago Species.” Oecologia, 83, 560–567.

Tanner M (1994). Tools for Statistical Inference. Springer-Verlag, New York.

Verhelst N (2007). “An Efficient MCMC-Algorithm to Sample Binary Matrices With Fixed
Marginals.” Psychometrika. In press.

Wasserman S (1977). “Random Directed Graph Distributions and the Triad Census in Social
Networks.” Journal of Mathematical Sociology, 5, 61–86.

http://www.R-project.org/
http://www.R-project.org/

14 The Rasch Sampler

Affiliation:

Norman D. Verhelst
National Institute for Educational Measurement (Cito)
Arnhem, The Netherlands
E-mail: norman.verhelst@cito.nl
URL: http://www.cito.nl

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 20, Issue 4 Submitted: 2006-10-01
May 2007 Accepted: 2007-02-22

mailto:norman.verhelst@cito.nl
http://www.cito.nl
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Tetrad and binomial neighborhoods
	The case of n times 2 matrices
	The general case of n times k matrices.

	The basic transition matrix of the Markov chain
	The Metropolis-Hastings algorithm
	Square matrices with fixed diagonals
	An implementation in R: The RaschSampler package
	General structure
	User control
	Some examples

