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AUSTRIAN JOURNAL OF STATISTICS
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A Framework to Interpret
Nonstandard Log-Linear Models

Patrick Mair
Vienna University of Economics and Business Administration

Abstract: The formulation of log-linear models within the framework of
Generalized Linear Models offers new possibilities in modeling categorical
data. The resulting models are not restricted to the analysis of contingency
tables in terms of ordinary hierarchical interactions. Such models are con-
sidered as the family of nonstandard log-linear models. The problem that
can arise is an ambiguous interpretation of parameters. In the current paper
this problem is solved by looking at the effects coded in the design matrix
and determining the numerical contribution of single effects. Based on these
results, stepwise approaches are proposed in order to achieve parsimonious
models. In addition, some testing strategies are presented to test such (eventu-
ally non-nested) models against each other. As a result, a whole interpretation
framework is elaborated to examine nonstandard log-linear models in depth.

Zusammenfassung: Die Formulierung log-linearer Modelle im Kontext von
Generalisierten Linearen Modellen führt zu neuen Möglichkeiten in der Mod-
ellierung kategorialer Daten. Diese Modelle sind nicht beschränkt auf die
übliche Kontingenztafelanalyse mit hierarchischen Interaktionen und wer-
den als nonstandard log-lineare Modelle bezeichnet. Bei solchen Modellen
kann es vorkommen, dass die Parameter nicht mehr eindeutig interpretierbar
sind. Dieses Problem wird im vorliegenden Artikel gelöst, indem die rela-
tiven Beiträge einzelner codierter Designvektoren ermittelt werden. Anhand
dieser Ergebnisse werden schrittweise Verfahren präsentiert, um sparsame
Modelle zu fitten. Zudem werden Ansätze gezeigt, um resultierende (evtl.
nicht-genestete) Modelle gegeneinander zu testen. Somit wird eine Proze-
dur vorgeschlagen, die es erlaubt, solche nichtstandard log-linearen Modelle
eingehend zu analysieren.

Keywords: Dominance Analysis, Stepwise Selection, Non-Nested Model
Testing.

1 Introduction
Log-linear models (see e.g. Goodman, 1970; Bishop, Fienberg, and Holland, 1975) are
used to model the frequencies of multidimensional contingency tables. With this mod-
eling approach specific statements about the dependency structures among the variables
(i.e. dimensions) can be made. The basic saturated formulation for a, say, three-way table
is

log(mijk) = λ + λA
i + λB

j + λC
k + λAB

ij + λAC
ik + λBC

jk + λABC
ijk .

The expected cell frequencies are denoted by m with the cell index subscripts i, j, and k.
λ is the intercept parameter (i.e. no effects). The main effects for variables A, B, and C
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are λA
i , λB

j , and λC
k . The two-way interactions are λAB

ij , λAC
ik , and λBC

jk . The three-way
interaction is given by λABC

ijk . The common restrictions are that the main effect parameters
sum up to 0. The same applies to the two-way interactions as well as for the three-way
interactions for each index. Further explanations and issues of parameter interpretation in
terms of the mean of the logarithms of the expected cell frequencies can be e.g. found in
Bishop et al. (1975).

With the introduction of generalized linear models (GLMs) by Nelder and Wedder-
burn (1972) it was shown that log-linear models fit into the corresponding framework
(see e.g. Evers and Namboodiri, 1979; McCullagh and Nelder, 1989) given by

g(µ) = Xβ

with g(µ) = log(m) and X as the design matrix. As a consequence, this approach offers
a more flexible tool in log-linear modeling. The corresponding log-linear models are so
called standard and nonstandard log-linear models (see Rindskopf, 1990, 1999; Mair,
2006) and can be defined as follows:

Definition ”Nonstandard log-linear models”: If the design matrix X deviates from
the ordinary effect or dummy coding scheme with corresponding main and interaction
effects, log (m) = Xβ can be considered as nonstandard log-linear model.

In other words, standard log-linear models are the direct ”translation” of the Goodman
representation into GLM. All other models are nonstandard. It is to mention that if some
coding vectors are missing in order to fulfill the hierarchy principle (lower-order parame-
ters can not be removed if higher-order parameters are still in the model; see e.g. Bishop
et al., 1975) the model is non-hierarchical (see Magidson, Swan, and Berk, 1981). As
suggested by the definition above, non-hierarchical models can be considered as special
cases of nonstandard log-linear models.

A simple example of a nonstandard model is given in von Eye and Spiel (1996). The
data describe repeat restaurants visitors’ choices (N = 94) of main dishes at two occa-
sions. These main dishes are Prime Rib (R), Sole (S), and Vegetarian Plate (V ). The ob-
served frequency vector of the underlying (3×3)-table is nT = (25, 14, 3, 11, 17, 6, 7, 3, 8).
In order to analyze a quasi-symmetry model for this table, they propose the design matrix

X =




1 1 0 1 0 0 0 0
1 1 0 0 1 1 0 0
1 1 0 −1 −1 0 1 0
1 0 1 1 0 1 0 0
1 0 1 0 1 0 0 0
1 0 1 −1 −1 0 0 1
1 −1 −1 1 0 0 1 0
1 −1 −1 0 1 0 0 1
1 −1 −1 −1 −1 0 0 0




Obviously, the first vector is the intercept, followed by two main effect vectors for the
first testing occasion and two main effects for the second occasion. So far, the model
would be standard and the corresponding fit statistics would be G2 = 15.863 (df = 4;
p = 0.0032). Since there are three additional vectors for the symmetry pairs, the model
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becomes nonstandard and the likelihood ratio (LR) value is G2 = 2.966 (df = 1; p =
0.085).

For the variety of applications of such models see Mair and Eye (in preparation). In
this paper a framework is presented that allows to analyze such nonstandard log-linear
models in depth. This includes a stepwise approach to achieve a fitting model, determine
the relative importance of single effects to model fit, and the comparison of two models
(even on a non-nested level).

2 Establishing the Framework
The main problem in the analysis of nonstandard log-linear models is that, in general, the
coding vectors in the design matrix are correlated among each other. By the way, this
fact occurs in ordinary multifactorial ANOVA as well. A simple example should reflect
this circumstance: Let us consider a (3 × 2)-table which leads to the saturated log-linear
formulation with design matrix X (effect coding)

log




m11

m12

m21

m22

m31

m32




=




1 1 0 1 1 0
1 1 0 −1 −1 0
1 0 1 1 0 1
1 0 1 −1 0 1
1 −1 −1 1 −1 −1
1 −1 −1 −1 1 1







β0

β1

β2

β3

β4

β5




The first design vector in X, here denoted by x0, corresponds to the intercept. The succes-
sive two vectors x1, x2 are the main effects for factor A. x3 is the main effect vector for
B whereas x4 and x5 are the two-way interactions [A : B]. By examining the correlation
structure of the effects it is obvious that x1 and x2 are not independent from each other.
In fact, the correlation r(x1,x2) = 0.5. In contrast, it holds that x1⊥x3 and x1⊥x4. It is
straightforward to expand this correlation concept also with respect to x4 and x5. How-
ever, there is a correlation structure in X that leads to the fact that the parameters are not
interpretable independently from each other.

In the standard case, as above, this result is not grave. The parameters are still inter-
pretable in terms of odds ratios (Rudas, 1988) or by deviations from the grand mean of
the logarithm of the expected cell frequencies (Goodman, 1970). But in the nonstandard
case the correlation structure becomes even more complex. The consequences are that the
parameters are not interpretable independently from each other and furthermore, it is not
warranted that they are meaningfully interpretable at all. As Mair and Eye (in preparation)
show (see also Section 2.2), the formal representations can become exhaustive and thus
it is difficult (if not impossible) to interpret these terms. In order to circumvent this am-
biguous way to interpret the parameters, a numerical interpretation approach is presented
in this paper. But first, a stepwise model build-up approach is discussed in the next sub-
section and, after determining the relative contribution of effects, the last subsection deals
with the comparison of non-nested log-linear models. With these three issues integrated
in a common framework programmed in R, standard as well as nonstandard models can
be analyzed in depth.
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2.1 Forward Selection of Coding Vectors

In ordinary stepwise regression analysis the selection criterion is based on a partial F-
statistic. The predictor with the (significantly) largest gain in explained variability of
the response Y is entered (forward stepwise selection). Due to multicollinearity issues
an entered predictor can also be re-dropped. In log-linear modeling, i.e. dealing with
categorical data, no sum of squares (SS) and, thus, no F-statistic can be defined. Several
stepwise procedures have been elaborated (Brown, 1976; Benedetti and Brown, 1978;
Edwards and Havranek, 1985). For the current purpose the forward selection presented by
Goodman (1971) based on the χ2-decomposition is adopted. That is because Goodman’s
approach does not require any hierarchy structure in the model effects entered, unlike the
approaches mentioned above.

The starting points are base models that may derive either from certain preselections
(see Brown, 1976) or by choosing a priori some non-saturated models. After choosing a
base model M (0), those models M

(1)
r (r = 1, . . . , R) that differ in exactly one additional

main or interaction effect from M (0) are considered. R is the number of these less parsi-
monious models. First, for each of the M

(1)
r -models the single LR-statistic is computed

and for the best model M
(1)
r∗ , the conditional LR-statistic G2(M (0) | M

(1)
r∗ ) is calculated.

If either G2(M
(1)
r∗ ) or G2(M (0) | M

(1)
r∗ ) are significant (or both), M (0) := M

(1)
r∗ . Hence,

M
(1)
r∗ is the new base model and the procedure continues. Otherwise the algorithm stops

at step t = T and M0 is the best model.
The only supposition for this method (Goodman, 1971) refers to the nested order of

the models in order to calculate the conditional LR-statistic. This nested order is given
for standard and nonstandard log-linear models since by operating stepwise and starting
from a base model, one single parameter is added at each step. Therefore, the model at
step t− 1 is nested in the model at step t (t = 1, . . . , T ). The final model is built up in the
following way:

• Define an initial base model M (0). Usually, this model contains only the intercept
parameter β0, i.e. log(m) = β01, but, in general, any other model can act as M (0).

• Compute all conditional LR-statistics referring to each single effect. The effect with
the highest gain in G2(M (0) | M (1)

r ) is added to M (0). The resulting model is M
(1)
r∗ .

• Set M
(1)
r∗ as the new base model, i.e. M (0) := M

(1)
r∗ and add one additional parame-

ter following the explanation in step 2.

• Proceed until neither G2(M (0) | M (1)
r∗ ) nor G2(M

(1)
r∗ ) is significant anymore.

A modification proposed here for a nonstandard model is the following: This part of the
procedure acts as an extensive exploration of the effects. Thus, a researcher does not have
to add the parameter with the highest gain in (G2(M (0) | M

(1)
r ) by force. He can add

a less attractive parameter (following e.g. certain hypotheses) and compare the resulting
model with another model built up with this approach as well. In this sense, there also is
not necessarily a need to proceed until non-significance of the LR-statistic is reached.

As mentioned, this stepwise approach does not require any hierarchical order in the
effects following the hierarchy principle (see e.g. Bishop et al., 1975) which is usually
considered in ordinary log-linear modeling. For instance, without entering the corre-
sponding main effect one can enter an interaction effect. This is not consistent with the
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mentioned hierarchy principle and would lead to a, so called, non-hierarchical log-linear
model (see e.g. Magidson et al., 1981; Breen, 1984). The relevance of such a model from
a content based view is not discussed here and, hence, just referred to Fienberg (1979)
and Wickens (1989). In addition, it has to be remarked that from a GLM perspective such
non-hierarchical models are nonstandard as well.

To conclude, the mentioned routine allows to enter arbitrary effects and to determine
the goodness-of-fit after each step. In addition, a Pseudo-R2 can be computed even though
the interpretation of the value of R2 is rather ambiguous for categorical data and should
not be over-interpreted (Shtatland, Kleinman, and Cain, 2002).

2.2 Determining the Relative Contribution of Effects

As mentioned in the introduction, in general, the design vectors are correlated among each
other. This implies that the parameters β are not interpretable independently from each
other. Moreover, by imposing some nonstandard coding structure in the design matrix the
question raises whether the parameters can be interpreted at all.

To clarify this issue, ordinary hierarchical models are regarded first. For these models,
the discussions about the meaning of the interpretation of single parameters, unlike the
interpretation of the whole selected model are manifold (see Holt, 1979; Wilson, 1979;
Gilbert, 1981; and Alba, 1988). However, Rudas (1988) elaborates how the parameters
can be interpreted in terms of odds ratios. For general tables (i.e. polytomous variables)
with more than three dimensions the interpretation on the basis of odds ratios becomes
very complex (i.e. conditional odds ratios of higher order). Also the ANOVA-like inter-
pretation (see e.g. Bishop et al., 1975) as well as a related approach proposed by Elliott
(1988) do not work straightforwardly for high-dimensional tables. Moreover, it has to be
stressed that this discussion only refers to the hierarchical (standard) case.

In the nonstandard case, the interpretability becomes even more complex. Mair and
Eye (in preparation) use the formal parameter representation derived from the GLM equa-
tion, i.e.

β = (X′X)−1X′ log(m).

It is to mention that this statement (see e.g. Bock, 1975; Rindskopf, 1990) has nothing
to do with least squares estimation; it is just a formal representation of the parameter
vector. In fact, the parameters are usually estimated through maximum likelihood which
can be performed with ordinary GLM compatible software like R, SAS, SPSS, and LEM
(Vermunt, 1997). However, in nonstandard models the formal representation can become
very complex and the parameters are not interpretable anymore on a formal and content
based level, respectively.

Due to the mentioned difficulties in interpretation, the solution proposed in this paper
is to focus on the effects in the design matrix and not on the parameter vector itself. The
design matrix is established by the researcher and, therefore, the meaning of the design
vectors is known. What is unknown is the relative importance and contribution of the
single design vectors for model fit. In other words: How important is a certain design
vector in the context of the other vectors in the model? Since the design vectors are
correlated among each other, the following approach is proposed.
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Table 1: Gender/Smoker Cross-Classification.
Smoker Non-smoker Σ

Female 10 40 50
Male 20 30 50
Σ 30 70 100

To be able to deal with multicollinearity issues in ordinary regression, Budescu (1993)
has elaborated a procedure for determining the mean importance of the predictors in the
model (see also Azen and Budescu, 2003). This approach is called dominance anal-
ysis and is based on multiple correlations between a certain subset of predictors and the
response. To be able to apply this concept to log-linear models the question has to be clar-
ified whether it makes sense to compute a correlation between a design vector xi (which
is the predictor) and the expected frequency vector m, respectively log(m) (which is the
response). A simple hypothetical example can be considered to examine this issue. A
cross-classification of gender and smoking habit leads to Table 1. The corresponding
saturated log-linear model is

log




m11

m12

m21

m22


 =




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1







β0

β1

β2

β3


 .

x0 is the intercept, x1 the gender effect, x2 the smoker effect, and x3 the interaction.
Since the model is saturated, mT = nT = (10, 40, 20, 30). The correlations for the main
effect vectors x1 and x2 are r(m,x1) = 0 and r(m,x1) = −0.894. From the marginal
frequencies in 1 it is obvious that there is no gender effect; r(m,x1) reflects this topic.
That there are more non-smokers than smokers is reflected by a negative r(m,x1), since
the non-smokers are coded by −1. The same can be done for the interaction term and for
any other design vectors in a model. If dummy coding is used, the Pearson correlation
coefficient becomes a point-biserial correlation whereas in the case of effect coding, the
groups coded by 1 and −1 are included in the computation and the 0-groups excluded.

However, at this point it should be clear that it is admissible to compute correlations
between design vectors and frequency vectors since these correlations reflect the corre-
sponding contrasts. In addition, the logarithm of the frequency vector can be correlated
as well; the amount of correlation changes but since the logarithm is monotonic increas-
ing, the ordering of the correlation coefficients remains the same. And this property is
important for dominance analysis, as will become clear in the following elaborations. For
further reading it is referred to Mair (2006).

Back to dominance analysis: Since this approach has to be modified with respect to
log-linear models, log(m) is used. First, Budescu (1993) states that a predictor xi ”weakly
dominates” xj (i.e. xi is as least as important as xj) if the multiple correlations

r2
log(m).xixh

≥ r2
log(m).xjxh

,

where xh stands for any subset of the remaining p−2 variables (p design vectors in total).
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An analogous form is

(r2
log(m).xixh

− r2
log(m).xh

) ≥ (r2
log(m).xjxh

− r2
log(m).xh

) ,

where the variable’s usefulness in the context of dominance is regarded. The shorthand
notation of dominance is

xiD xj .

Therefore, xi is said to weakly dominate xj , if in all subset models that do not include
either of the two predictors, xi is at least as useful as xj (i.e., xi contributes to the overall
fit of the model as much as xj does). The possible relationships for two predictors xi and
xj are

• xiD xj

• xjD xi

• xiD xj and xjD xi

• xiD xj or xjD xi.
The third case above defines equal importance and the fourth case indicates situations
where the relative importance cannot be determined.

At this point we know about the dominance of the predictors. But the initial question
was to determine a value for relative contribution of single effects independent from the
other effects in the model. From the explanations above Budescu (1993) proposes, based
on a work by Kruskal (1987), to compute the average usefulness (importance) C

(k)
xi of xi

across all
(

p−1
k

)
models consisting of k + 1 variables. The corresponding predictor subset

is denoted by xh and as a consequence, the importance measure is defined as

C(k)
xi

=

∑
(r2

log(m).xixh
− r2

log(m).xh
)(

p−1
k

) .

Finally, the mean importance of xi is

Cxi
=

1

p

p−1∑

k=0

C(k)
xi

.

An important point of the results given in Budescu (1993) and Kruskal (1987) is that by
summing up over all predictors, an alternative way to compute a Pseudo-R2 in log-linear
models is accomplished. It is given by

R2
dom =

p∑
i=1

Cxi
.

When determining the relative importance, the R2 acts as reference value in the sense that
it is the total amount of explanation in the frequency vector achieved through the effects
in the model. By dividing Cxi

/R2 for all i = 1, . . . , p the relative mean importance and
contribution of each effect to model fit can be determined and it is denoted by ψrel(xi).

To conclude, with the presented approach and in combination with the content based
interpretability of the effects in the design matrix the single components (design vectors)
of a standard as well as nonstandard log-linear model are completely analyzed.
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2.3 Comparing Non-Nested Models
Log-linear models which are nested within each other are comparable through a LR-
statistic. In the non-nested case, model comparison is usually performed on a descriptive
level by comparing some information criteria like AIC or BIC. There are several proce-
dures that allow to test two non-nested models against each other (Linhart, 1988; Vuong,
1989; Greene, 2003). For the current log-linear model analysis framework, Linhart’s pro-
cedure is used. The reason for applying this method which is briefly discussed in this
section, is that it was already successfully used for the comparison of hierarchical log-
linear models (Linhart and Zucchini, 1986). However, there are no simulation studies or
theoretical comments concerning the performance of the mentioned tests with respect to
log-linear modeling that the author is aware of.

In Linhart’s test the operating distribution function is given by F (x) and the approx-
imating distribution function by Gθ(x); θ ∈ Θ ⊂ Rp, x ∈ Rk. The basis for the test
statistic is the Kullback-Leibler (KL) discrepancy

∆(θ) = −EF (log gθ(x)) ,

where gθ is the corresponding density. The distribution functions of the two models to
be compared are denoted by G

(1)

θ(1) and G
(2)

θ(2) . Under certain regularity conditions the
following hypothesis about the expected discrepancies can be stated:

E
(
∆(1)(θ̂(1)

n )
)
≤ E

(
∆(2)(θ̂(2)

n )
)

.

In other words this hypothesis states that model 1 fits significantly better than model 2 (the
smaller the KL discrepancy the better the model fits). In order to achieve a test statistic
the joint asymptotic distribution of

√
n(∆

(i)
n (θ̂

(i)
n ) − ∆(i)(θ

(i)
0 )), for i ∈ {1, 2}, has to be

determined. By using the central limit theorem it follows that


√

n
(
∆

(1)
n (θ

(1)
0 )−∆(1)(θ

(1)
0 )

)

√
n

(
∆

(2)
n (θ

(2)
0 )−∆(2)(θ

(2)
0 )

)

 D→ N(0, Λ) .

Note that due to asymptotic reasons θ̂
(i)
n is substituted by θ

(i)
0 (see also Jennrich, 1969).

The elements λij (with i, j ∈ {1, 2}) of the variance-covariance matrix Λ are

λij = EF

(
log g

(i)

θ
(i)
0

(x) log g
(j)

θ
(j)
0

(x)

)
− EF

(
log g

(i)

θ
(i)
0

)
EF

(
log g

(j)

θ
(j)
0

)
.

It follows that

√
n

(∆
(1)
n (θ̂

(1)
n )−∆

(2)
n (θ̂

(2)
n )) + (∆(1)(θ

(1)
0 )−∆(2)(θ

(2)
0 ))√

λ11 + λ22 − 2λ12

D→ N(0, 1) .

Linhart and Zucchini (1986) show that for the expected discrepancies the following ap-
proximation holds asymptotically:

∆(i)(θ
(i)
0 ) ≈ EF

(
∆(i)

n (θ̂(i)
n )

)
+

p(i)

2n
.
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Table 2: Data example.

Male Female
Small Networks Large Networks Small Networks Large Networks

Married 48 87 5 14
Nonmarried 78 45 130 109

Under the hypothesis that the two expected discrepancies are equal it follows that the
components in the numerator of the equation above are Akaike’s criteria for both models,
i.e. AIC(1) and AIC(2). Finally, Linhart (1988) proposes the test statistic

zAIC =
√

n
AIC(1) − AIC(2)

√
λ11 + λ22 − 2λ12

,

which is asymptotically N(0, 1)-distributed. This asymptotic distribution remains un-
changed if λij is replaced by λ̂ij , i.e. θ̂

(i)
n instead of θ

(i)
0 in the equation for λij . For con-

tingency tables usually AIC = G2 + 2p. If the given test is applied then the numerator in
zAIC changes to

AIC(1) − AIC(2) =
(G2(M (1)) + 2p(1))− (G2(M (2)) + 2p(2))

2n
,

where p(1) and p(2) are the number of free parameters in M (1) and M (2), respectively (see
Linhart, 1988, p. 160). An application example of this test statistic is given in the next
section and for further elaborations it is referred to Shimodaira (1997).

3 Algorithmical Implementation and Data Example

At this point some work flow explanations with respect to a programming implementation
in R are given. The corresponding flow chart of the whole routine is given in Figure 1.
The input of this routine are the frequency vector and the design matrix.

Based on this matrix, a model is build up by starting from the base model M (0) and by
adding gradually design vectors until a certain model is achieved. After determining the
fit and the relative importance of the effects in the model, another model can be specified
and the procedure starts from the beginning. If these two models are nested, they are
compared with a LR-statistic whereas in the non-nested case zAIC is computed. At the
end, both models are analyzed and tested against each other.

The following example is taken from von Eye and Niedermeier (1999) and the corre-
sponding data are given in Table 2. The frequencies correspond to a cross-classification
of Marital Status (M ; 1 = married, 2 = not married), Gender (G; 1 = male, 2 = female),
and Size of Social Network (S; 1 = small, 2 = large). In total there are N = 516 subjects.
This simple example shows strikingly the usefulness of nonstandard log-linear models in
terms of imposing special hypotheses and improving the model fit. The corresponding
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Figure 1: Flowchart of the Framework

GLM representation of the log-linear model is
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Table 3: Results of stepwise analysis.

Model df Deviance R2
MF AIC

log(m) = β01 7 249.21 — 296.28
log(m) = β0 + β4x4 6 141.07 0.43 190.14
log(m) = β0 + β4x4 + β1x1 5 54.79 0.78 105.86
log(m) = β0 + β4x4 + β1x1 + β2x2 4 26.68 0.89 79.75
log(m) = β0 + β4x4 + β1x1 + β2x2 + β5x5 3 11.47 0.95 66.53
log(m) = β0 + β4x4 + β1x1 + β2x2 + β5x5 + β3x3 2 3.38 0.98 60.45

This model is nonstandard since the last effect is a special coding vector and, thus, the
design matrix deviates from an ordinary effect or dummy coding. The last vector is the
translation of the assumption that among married people there is a difference in the size
of social networks and this statement can be regarded as a special hypothesis. Moreover,
the first vector is the intercept, the next three are the main effects and the third is the
interaction [M : G].

By using the presented stepwise approach to build up the model and by starting with
the intercept only model log(m) = β01, the effects are carried in the order as given in
Table 3.

To determine the goodness-of-fit, the deviance, McFadden’s R2
MF , and AIC are com-

puted. The final model fits the data very well with R2
MF = 0.98 and the parameters are

entered in the following order: x4, x1, x2, x5, and x3. This issue is confirmed by the
dominance analysis, where the dominance ordering is given by

x4D x1D x2D x5D x3 .

These results suggest that the most important vector with respect to model fit is the in-
teraction term [M : G], followed by the main effects for M and G. Finally, the special
coding vector dominates the main effect S. Basically, this approach can be considered as
an ordinary analysis of deviance for log-linear models where the gathering of the param-
eters do not follow any hierarchical order.

From a content based view the question is whether the hypothesis stated through the
coding vector is substantial (model M (1)) with respect to, e.g., a main effects model M (0).
The corresponding LR-statistic is

G2(M (0) | M (1)) = G2(M (0))−G2(M (1)) = 162.86− 139.64 = 24.04 .

The df = 4 − 3 = 1 and, thus, a significant p-value results which suggests that the
improvement in the model due to the special effect is substantial.

Furthermore, using the dominance analysis the mean importances of the single vectors
in the model context are computed. The corresponding relative mean importances of the
effects are

ψrel(x1) = 0.377 , ψrel(x2) = 0.104 , ψrel(x3) = 0.013 ,
ψrel(x4) = 0.430 , ψrel(x5) = 0.077 .

Therefore, a R2
dom = 0.99 results. When comparing R2

dom to R2
MF = 0.98 as computed

before and it is obvious that both R2-values are almost equal.
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Next, by using the same frequency table, a second model is fitted in order to apply Lin-
hart’s test procedure. This model and the former one are non-nested. The GLM equation
is of the form

log
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.

Instead of the special contrast vector, this model contains the remaining two-way interac-
tions [M : S] and [G : S] and is denoted as M2; the former model is named as M (1). The
question of interest is whether M (2) fits significantly better than the more parsimonious
M (1). Thus, the corresponding hypothesis can be stated as

H0 : AIC(2) ≥ AIC(1)

H1 : AIC(2) < AIC(1)

H1 corresponds to the research question above. Using the equations given in Section
2.3, it follows that λ11 = 0.290, λ12 = 0.285, and λ22 = 0.287; AIC(1) = 60.45, and
AIC(2) = 59.08. Therefore,

zAIC =
√

516
(60.45− 59.08)/1032√

0.290 + 0.287− 2× 0.285
= 0.36 ,

which corresponds to a p-value of 0.36 in the N(0, 1)-distribution. Thus, the higher pa-
rameterized model M (2) does not provide a significantly better fit than the more parsi-
monious model M (2) with less parameters. This is an important issue in nonstandard
log-linear modeling: Such models can have less parameters but fit satisfactorily.

4 Discussion
Nonstandard log-linear models are a flexible tool to analyze categorical data. The estima-
tion of these models is straightforward (ML), whereas the interpretation of the parameters
can be rather ambiguous. In this paper, an analysis framework is presented that focuses
on the model effects. Initially, design vectors are included stepwise. These components
of the design matrix are interpretable formally. From a numerical point of view there was
a lack in parameter interpretability with respect to the contribution to model fit. The solu-
tion elaborated here adopts the concept of dominance analysis to log-linear models. The
key question that can be answered at the end is whether a certain design vector xi is more
or less (or equally) important than xj in the context of the effects included in the selected
model. The higher the importance, the higher the contribution of an effect to model fit. In
addition, by summing up over the single effect importances, a method results to compute
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an R2 in log-linear models. How the corresponding R2
dom performs in comparison to other

Pseudo-R2 in categorical data analysis, has not been studied yet.
Finally, to complete the framework, Linhart’s test is used to compare two non-nested

models. This test statistic is based on the comparison of the AIC’s of the corresponding
models. As mentioned, several procedures exist to test models on a non-nested level. To
determine which test statistic is the most suitable, further studies are needed. However,
the current procedure provides an analysis tool for standard and nonstandard log-linear
models with respect to the mentioned topics. A corresponding source code in R is avail-
able upon request.
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