155 research outputs found

    Optical investigations of nanostructured oxides and semiconductors

    Get PDF
    This work is motivated by the prospect of building a quantum computer: a device that would allow physicists to explore quantum mechanics more deeply, and allow everyone else to keep their credit card numbers safe on the internet. In this thesis we explore materials that are relevant to a proposed quantum computer architecture.Systems with a ferroelectric to paraelectric transition in the vicinity of room temperature areuseful for devices. Adjusting the ferroelectric transition temperature is traditionally accomplished by chemical substitution, as in barium strontium titanate. We investigate strained-strontium titanate, which is ferroelectric at room-temperature, and a composite material of barium strontium titanate and magnesium oxide.We present optical techniques to measure electron spin dynamics with GHz dynamical bandwidth,transform-limited spectral selectivity, and phase-sensitive detection. We demonstrate the technique with a measurement of GHz-spin precession in n-GaAs. We also describe our efforts to measure single quantum dots optically.Nanoscale devices with photonic properties have been the subject of intense research over the past decade. Potential nanophotonic applications include communications, polarization-sensitive detectors, and solar power generation. Here we show photosensitivity of a nanoscale detectorwritten at the interface between two oxides

    Gigahertz Optical Spin Transceiver

    Get PDF
    We present a time-resolved optical technique to measure electron spin dynamics with GHz dynamical bandwidth, transform-limited spectral selectivity, and phase-sensitive (lock-in) detection. Use of a continuous-wave (CW) laser and fast optical bridge enables greatly improved signal-to-noise characteristics compared to traditional optical sampling (pump-probe) techniques. We demonstrate the technique with a measurement of GHz-spin precession in n-GaAs. This approach may be applicable to other physical systems where stroboscopic techniques cannot be used because of either noise or spectral limitations

    The Microbial Flora of Acid Mine Water and its Relationship to Formation and Removal of Acid

    Get PDF
    (print) viii, 124 p. illus. 28 cm.Title Page -- Table of Contents -- List of Tables -- List of Figures -- I: Introduction -- II: The Influence of Acid Water on Aerobic Heterotrophs of A Normal Stream -- III: The Relative Influence of Iron, Sulfate and Hydrogen Ions on the Microflora of A Non-Acid Stream -- IV: Aerobic Heterotrophs Indigenous to pH 2.8 Mine Water -- V: A Microbial Dissimilatory Sulfur Cycle -- VI: Microbial Sulfate Reduction in Acidic Mine Water and Its Potential Utility as A Water Pollution -- VII: General Summary and Conclusions -- VIII: Recommendations -- IX: Publications Resulting from this Research Projec

    Spin-orbit-assisted electron pairing in 1D waveguides

    Full text link
    Understanding and controlling the transport properties of interacting fermions is a key forefront in quantum physics across a variety of experimental platforms. Motivated by recent experiments in 1D electron channels written on the LaAlO3\mathrm{LaAlO_3}/SrTiO3\mathrm{SrTiO_3} interface, we analyse how the presence of different forms of spin-orbit coupling (SOC) can enhance electron pairing in 1D waveguides. We first show how the intrinsic Rashba SOC felt by electrons at interfaces such as LaAlO3\mathrm{LaAlO_3}/SrTiO3\mathrm{SrTiO_3} can be reduced when they are confined in 1D. Then, we discuss how SOC can be engineered, and show using a mean-field Hartree-Fock-Bogoliubov model that SOC can generate and enhance spin-singlet and triplet electron pairing. Our results are consistent with two recent sets of experiments [Briggeman et al., arXiv:1912.07164; Sci. Adv. 6, eaba6337 (2020)] that are believed to engineer the forms of SOC investigated in this work, which suggests that metal-oxide heterostructures constitute attractive platforms to control the collective spin of electron bound states. However, our findings could also be applied to other experimental platforms involving spinful fermions with attractive interactions, such as cold atoms.Comment: 12 pages, 7 figure
    • …
    corecore