243 research outputs found

    OncoLog Volume 51, Number 05, May 2006

    Get PDF
    A Better Kind of Brain Surgery Raloxifene Effective for Breast Cancer Prevention House Call: The Many Benefits of Massage DiaLog: Cancer Vaccines and Immunotherapy, by Patrick Hwu, MD, Professor and Chair, Melanoma Medical Oncologyhttps://openworks.mdanderson.org/oncolog/1181/thumbnail.jp

    CD40-stimulated B Lymphocytes Pulsed with Tumor Antigens Are Effective Antigen-presenting Cells That Can Generate Specific T Cells

    Get PDF
    Although they are considered as antigen presenting cells (APC), the role of antigen-unspecific B-lymphocytes in antigen presentation and T lymphocyte stimulation remains controversial. In this paper, we tested the capacity of normal human peripheral activated B cells to stimulate T cells using melanoma antigens or melanoma cell lysates. B lymphocytes activated through CD40 ligation and then pulsed with tumor antigens efficiently processed and presented MHC class II restricted peptides to specific CD4+ T cell clones. This suggests that CD40-activated B cells have the functional and molecular competence to present MHC class II epitopes when pulsed with exogenous antigens, thereby making them a relevant source of APC to generate T cells. To test this hypothesis, CD40-activated B cells were pulsed with a lysate prepared from melanoma cells and used to stimulate peripheral autologous T cells. Interestingly, T cells specific to melanoma antigens were generated. Further analysis of these T cell clones revealed that they recognized MHC class II restricted epitopes from tyrosinase, a known melanoma tumor antigen. The efficient antigen presentation by antigen-unspecific activated B cells was correlated with a down-regulation in the expression of HLA-DO, a B cell specific protein known to interfere with HLA-DM function. Because HLA-DM is important in MHC class II peptide loading, the observed decrease in HLA-DO may partially explain the enhanced antigen presentation following B-cell activation. Results globally suggest that when they are properly activated, antigen-unspecific B-lymphocytes can present exogenous antigens by MHC class II molecules and stimulate peripheral antigen-specific T cells. Antigen presentation by activated B cells could be exploited for immunotherapy by allowing the in vitro generation of T cells specific against antigens expressed by tumors or viruses.Intramural National Institutes of Health (NIH) progra

    The iSBTc/SITC primer on tumor immunology and biological therapy of cancer: a summary of the 2010 program

    Get PDF
    The Society for Immunotherapy of Cancer, SITC (formerly the International Society for Biological Therapy of Cancer, iSBTc), aims to improve cancer patient outcomes by advancing the science, development and application of biological therapy and immunotherapy. The society and its educational programs have become premier destinations for interaction and innovation in the cancer biologics community. For over a decade, the society has offered the Primer on Tumor Immunology and Biological Therapy of Cancer™ in conjunction with its Annual Scientific Meeting. This report summarizes the 2010 Primer that took place October 1, 2010 in Washington, D.C. as part of the educational offerings associated with the society's 25th anniversary. The target audience was basic and clinical investigators from academia, industry and regulatory agencies, and included clinicians, post-doctoral fellows, students, and allied health professionals. Attendees were provided a review of basic immunology and educated on the current status and most recent advances in tumor immunology and clinical/translational caner immunology. Ten prominent investigators presented on the following topics: innate immunity and inflammation; an overview of adaptive immunity; dendritic cells; tumor microenvironment; regulatory immune cells; immune monitoring; cytokines in cancer immunotherapy; immune modulating antibodies; cancer vaccines; and adoptive T cell therapy. Presentation slides, a Primer webinar and additional program information are available online on the society's website

    Next generation sequencing of exceptional responders with BRAF-mutant melanoma: implications for sensitivity and resistance.

    Get PDF
    BackgroundPatients with BRAF mutation-positive advanced melanoma respond well to matched therapy with BRAF or MEK inhibitors, but often quickly develop resistance.MethodsTumor tissue from ten patients with advanced BRAF mutation-positive melanoma who achieved partial response (PR) or complete response (CR) on BRAF and/or MEK inhibitors was analyzed using next generation sequencing (NGS) assay. Genomic libraries were captured for 3230 exons in 182 cancer-related genes plus 37 introns from 14 genes often rearranged in cancer and sequenced to average median depth of 734X with 99% of bases covered >100X.ResultsThree of the ten patients (median number of prior therapies = 2) attained prolonged CR (duration = 23.6+ to 28.7+ months); seven patients achieved either a PR or a short-lived CR. One patient who achieved CR ongoing at 28.7+ months and had tissue available close to the time of initiating BRAF inhibitor therapy had only a BRAF mutation. Abnormalities in addition to BRAF mutation found in other patients included: mutations in NRAS, APC and NF1; amplifications in BRAF, aurora kinase A, MYC, MITF and MET; deletions in CDKN2A/B and PAX5; and, alterations in RB1 and ATM. Heterogeneity between patients and molecular evolution within patients was noted.ConclusionNGS identified potentially actionable DNA alterations that could account for resistance in patients with BRAF mutation-positive advanced melanoma who achieved a PR or CR but whose tumors later progressed. A subset of patients with advanced melanoma may harbor only a BRAF mutation and achieve a durable CR on BRAF pathway inhibitors

    Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma

    Get PDF
    Immunotherapy approaches for pancreatic ductal adenocarcinoma (PDAC) have met with limited success. It has been postulated that a low mutation load may lead to a paucity of T cells within the tumor microenvironment (TME). However, it is also possible that while neoantigens are present, an effective immune response cannot be generated due to an immune suppressive TME. To discern whether targetable neoantigens exist in PDAC, we performed a comprehensive study using genomic profiles of 221 PDAC cases extracted from public databases. Our findings reveal that: (a) nearly all PDAC samples harbor potentially targetable neoantigens; (b) T cells are present but generally show a reduced activation signature; and (c) markers of efficient antigen presentation are associated with a reduced signature of markers characterizing cytotoxic T cells. These findings suggest that despite the presence of tumor specific neoepitopes, T cell activation is actively suppressed in PDAC. Further, we identify iNOS as a potential mediator of immune suppression that might be actionable using pharmacological avenues

    Multifaceted role of BTLA in the control of CD8+ T cell fate after antigen encounter

    Get PDF
    Purpose: Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes (TIL) has shown an overall clinical response rate 40%–50% in metastatic melanoma patients. BTLA (B-and-T lymphocyte associated) expression on transferred CD8+ TILs was associated with better clinical outcome. The suppressive function of the ITIM and ITSM motifs of BTLA is well described. Here, we sought to determine the functional characteristics of the CD8+BTLA+TIL subset and define the contribution of the Grb2 motif of BTLA in T-cell costimulation. Experimental Design: We determined the functional role and downstream signal of BTLA in both human CD8+ TILs and mouse CD8+ T cells. Functional assays were used including single-cell analysis, reverse-phase protein array (RPPA), antigen-specific vaccination models with adoptively transferred TCR-transgenic T cells as well as patient-derived xenograft (PDX) model using immunodeficient NOD-scid IL2Rgammanull (NSG) tumor-bearing mice treated with autologous TILs. Results: CD8+BTLA? TILs could not control tumor growth in vivo as well as their BTLA+ counterpart and antigen-specific CD8+BTLA? T cells had impaired recall response to a vaccine. However, CD8+BTLA+ TILs displayed improved survival following the killing of a tumor target and heightened “serial killing” capacity. Using mutants of BTLA signaling motifs, we uncovered a costimulatory function mediated by Grb2 through enhancing the secretion of IL-2 and the activation of Src after TCR stimulation. Conclusions: Our data portrays BTLA as a molecule with the singular ability to provide both costimulatory and coinhibitory signals to activated CD8+ T cells, resulting in extended survival, improved tumor control, and the development of a functional recall response. Clin Cancer Res; 23(20); 6151–64. ©2017 AACR
    corecore