11 research outputs found
Water Vapour Variability in the High-Latitude Upper Troposphere- Part 2: Impact of Volcanic Eruptions
The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE) water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS). The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellitebased remote sensing mission are chosen. The Puyehue-Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12)% increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of similar to 1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by windblown plumes. The Puyehue-Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade
Nitrous Oxide in the Atmosphere: First Measurements of a Lower Thermospheric Source
Nitrous oxide (N2O) is an important anthropogenic greenhouse gas, as well as one of the most significant anthropogenic ozone-depleting substances in the stratosphere. The satellite-based instrument Atmospheric Chemistry Experiment-Fourier Transform Spectrometer has been observing the Earth\u27s limb since 2004 and derives profiles of N2O volume mixing ratios in the upper troposphere to the lower thermosphere. The resulting climatology shows that N2O is continuously produced in the lower thermosphere via energetic particle precipitation and enhanced N2O is present at all latitudes, during all seasons. The results are consistent with an N2O production source peaking near or above 94 km via low-energy particles, as well as a polar wintertime source near 70 km via medium energy particles. N2O produced in the polar upper atmosphere descends each winter to as far down as ∼40 km. ©2016. American Geophysical Union
Linkages between the cold summer mesopause and thermospheric zonal mean circulation
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95392/1/grl28827.pd
Water vapour variability in the high-latitude upper troposphere – Part 2: Impact of volcanic eruptions
The impact of volcanic eruptions on water vapour in the high-latitude upper troposphere is studied using deseasonalized time series based on observations by the Atmospheric Chemistry Experiment (ACE) water vapour sensors, namely MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) and the Fourier Transform Spectrometer (ACE-FTS). The two eruptions with the greatest impact on the high-latitude upper troposphere during the time frame of this satellitebased remote sensing mission are chosen. The Puyehue-Cordón Caulle volcanic eruption in June 2011 was the most explosive in the past 24 years and is shown to be able to account for the observed (50 ± 12)% increase in water vapour in the southern high-latitude upper troposphere in July 2011 after a minor adjustment for the simultaneous influence of the Antarctic oscillation. Eyjafjallajökull erupted in the spring of 2010, increasing water vapour in the upper troposphere at northern high latitudes significantly for a period of similar to 1 month. These findings imply that extratropical volcanic eruptions in windy environments can lead to significant perturbations to high-latitude upper tropospheric humidity mostly due to entrainment of lower tropospheric moisture by windblown plumes. The Puyehue-Cordón Caulle eruption must be taken into account to properly determine the magnitude of the trend in southern high-latitude upper tropospheric water vapour over the last decade
Assessment of the quality of ACE-FTS stratospheric ozone data
For the past 17 years, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument on the Canadian SCISAT satellite has been measuring profiles of atmospheric ozone. The latest operational versions of the level 2 ozone data are versions 3.6 and 4.1. This study characterizes how both products compare with correlative data from other limb-sounding satellite instruments, namely MAESTRO, MLS, OSIRIS, SABER, and SMR. In general, v3.6, with respect to the other instruments, exhibits a smaller bias (which is on the order of similar to 3 %) in the middle stratosphere than v4.1 (similar to 2 %-9 %); however, the bias exhibited in the v4.1 data tends to be more stable, i.e. not changing significantly over time in any altitude region. In the lower stratosphere, v3.6 has a positive bias of about 3 %-5 % that is stable to within +/- 1 % per decade, and v4.1 has a bias on the order of -1 % to +5 % and is also stable to within +/- 1 % per decade. In the middle stratosphere, v3.6 has a positive bias of similar to 3 % with a significant negative drift on the order of 0.5 %-2.5 % per decade, and v4.1 has a positive bias of 2 %-9 % that is stable to within +/- 0.5 % per decade. In the upper stratosphere, v3.6 has a positive bias that increases with altitude up to similar to 16 % and a significant negative drift on the order of 2 %-3 % per decade, and v4.1 has a positive bias that increases with altitude up to similar to 15 % and is stable to within +/- 1 % per decade. Estimates indicate that both versions 3.6 and 4.1 have precision values on the order of 0.1-0.2 ppmv below 20 km and above 45 km (similar to 5 %-10 %, depending on altitude). Between 20 and 45 km, the estimated v3.6 precision of similar to 4 %-6 % is better than the estimated v4.1 precision of similar to 6 %-10 %
Validation of ACE-FTS Version 3.5 NOy Species Profiles Using Correlative Satellite Measurements
The ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) instrument on the Canadian SCISAT satellite, which has been in operation for over 12 years, has the capability of deriving stratospheric profiles of many of the NOy (N + NO + NO2 + NO3 + 2 x N2O5 + HNO3 + HNO4 + ClONO2 + BrONO2) species. Version 2.2 of ACE-FTS NO, NO2, HNO3, N2O5, and ClONO2 has previously been validated, and this study compares the most recent version (v3.5) of these five ACE-FTS products to spatially and temporally coincident measurements from other satellite instruments - GOMOS, HALOE, MAESTRO, MIPAS, MLS, OSIRIS, POAM III, SAGE III, SCIAMACHY, SMILES, and SMR. For each ACE-FTS measurement, a photochemical box model was used to simulate the diurnal variations of the NOy species and the ACE-FTS measurements were scaled to the local times of the coincident measurements. The comparisons for all five species show good agreement with correlative satellite measurements. For NO in the altitude range of 25-50 km, ACE-FTS typically agrees with correlative data to within -10%. Instrument-averaged mean relative differences are approximately -10% at 30-40 km for NO2, within ± 7% at 8-30km for HNO3, better than -7 % at 21-34 km for local morning N205, and better than -8% at 21-34 km for ClONO2. Where possible, the variations in the mean differences due to changes in the comparison local time and latitude are also discussed
Recommended from our members
Validation of ACE-FTS version 3.5 NOy species profiles using correlative satellite measurements
The ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) instrument on the Canadian SCISAT satellite, which has been in operation for over 12 years, has the capability of deriving stratospheric profiles of many of the NOy (N + NO + NO2+ NO3+ 2 × N2O5+ HNO3+ HNO4+ ClONO2+ BrONO2) species. Version 2.2 of ACE-FTS NO, NO2, HNO3, N2O5, and ClONO2 has previously been validated, and this study compares the most recent version (v3.5) of these five ACE-FTS products to spatially and temporally coincident measurements from other satellite instruments - GOMOS, HALOE, MAESTRO, MIPAS, MLS, OSIRIS, POAM III, SAGE III, SCIAMACHY, SMILES, and SMR. For each ACE-FTS measurement, a photochemical box model was used to simulate the diurnal variations of the NOy species and the ACE-FTS measurements were scaled to the local times of the coincident measurements. The comparisons for all five species show good agreement with correlative satellite measurements. For NO in the altitude range of 25-50km, ACE-FTS typically agrees with correlative data to within -10%. Instrument-averaged mean relative differences are approximately -10% at 30-40km for NO2, within ±7% at 8-30km for HNO3, better than -7% at 21-34km for local morning N2O5, and better than -8% at 21-34km for ClONO2. Where possible, the variations in the mean differences due to changes in the comparison local time and latitude are also discussed