51 research outputs found

    Determining Salinity-Tolerance of Giant Salvinia Using Chlorophyll Fluorescence

    Get PDF
    Salvinia molesta Mitchell, a floating invasive aquatic plant, is one of the top 10 worst invasive aquatic weeds in the world. It was discovered in the lower Pascagoula River in 2005 and evidence suggests that this non-native species is spreading along the northern Gulf of Mexico. These plants exhibit rapid growth and nutrient uptake rates, allowing them to out compete other plants in similar habitats. Distributional observations suggest that non-native S. molesta is able to survive in salinities of up to 7 ppt in the lower Pascagoula River. The response of S. molesta to three salinity levels (0, 5, 10 ppt) was tested using chlorophyll fluorescence. The health of the plants was measured over a period of one month, using a log scale series of observation intensities (hourly, daily, weekly). Plant responses indicated an acute salinity effect after about 4-6 hrs and then a gradual chronic decline. Compared to initial measurements, the final actual quantum yield (ΔF/Fm\u27) dropped by 5%, 6% and 29%, while the final potential quantum yield (Fv/Fm) dropped 6%, 27% and 39% in the 0, 5, and 10 ppt treatments, respectively. Only plants in the 0 ppt treatment showed significant new growth. Plants in 5 ppt appeared to maintain themselves, but plants at 10 ppt all exhibited signs of severe stress and loss of color, turgor, and tissue viability after 10 d. Tolerance to brackish salinities has been reported in the past, and has implications for the use of the biological control agent, the weevil Cyrtobagous salviniae, that can only tolerate freshwater conditions

    Measuring the Effects of Salinity Stress In the Red Mangrove, \u3ci\u3eRhizophora mangle\u3c/i\u3e L.

    Get PDF
    The mangrove habitat exhibits many unique physical features, one of the most important of which is a salinity gradient. Photosynthetic rates, as measured by leaf stomatal conductance and leaf chlorophyll fluorescence induction, were tested as indicators of salinity stress in seedlings of the red mangrove, Rhizophora mangle, grown under five different salinity levels: 0, 15, 30, 45, and 60 parts per thousand. Photosynthetic gas exchange (measured by stomatal conductance), as well as the light reaction of photosynthesis (measured by chlorophyll fluorescence) were found to decrease as salinity increased. The use of leaf stomatal conductance and chlorophyll fluorescence as a measure of photosynthesis allowed a rapid and reliable quantification of the known stressor, salinity, in seedlings of R. mangle. These non-destructive in-vivo techniques were found to be rapid and reliable for monitoring photosynthetic stress, an important physiological parameter determining survival and growth of mangrove plants. These techniques should be considered in forestry management and mangrove restoration projects to assess plant condition

    Seagrasses in the Mississippi and Chandeleur Sounds and Problems Associated with Decadal-Scale Change Detection

    Get PDF
    Seagrass mapping data from a multitude of previous projects in the Mississippi and Chandeleur sounds were gathered and combined to provide information on seagrass change from 1940 to 2011. Seagrasses generally occur in three groups: (1) along the Mississippi mainland coastline dominated by Ruppia maritima, (2) on the north side of Mississippi Sound barrier islands dominated by Halodule wrightii, and (3) on the west side of the Chandeleur Islands dominated by Thalassia testudinum co-occurring with other seagrass species. The study area generally lost seagrasses over the 71-yr period, ostensibly due to loss or reduction of protective island barriers and reductions in water quality. An example of how the time series of maps generated in this project can be utilized to further investigate seagrass change was demonstrated with data from Horn Island, including problems associated with calculating change in seagrass area using data from previous investigations. Comparisons of seagrass area among various studies that used different mapping methods (seagrass extent vs. seagrass coverage vs. vegetated seagrass area) can result in overestimation of area change and misleading conclusions

    Modeling Photosynthesis of \u3ci\u3eSpartina alterniflora\u3c/i\u3e (Smooth Cordgrass) Impacted by the Deepwater Horizon Oil Spill Using Bayesian Inference

    Get PDF
    To study the impact of the Deepwater Horizon oil spill on photosynthesis of coastal salt marsh plants in Mississippi, we developed a hierarchical Bayesian (HB) model based on field measurements collected from July 2010 to November 2011. We sampled three locations in Davis Bayou, Mississippi (30.375 degrees N, 88.790 degrees W) representative of a range of oil spill impacts. Measured photosynthesis was negative (respiration only) at the heavily oiled location in July 2010 only, and rates started to increase by August 2010. Photosynthesis at the medium oiling location was lower than at the control location in July 2010 and it continued to decrease in September 2010. During winter 2010-2011, the contrast between the control and the two impacted locations was not as obvious as in the growing season of 2010. Photosynthesis increased through spring 2011 at the three locations and decreased starting with October at the control location and a month earlier (September) at the impacted locations. Using the field data, we developed an HB model. The model simulations agreed well with the measured photosynthesis, capturing most of the variability of the measured data. On the basis of the posteriors of the parameters, we found that air temperature and photosynthetic active radiation positively influenced photosynthesis whereas the leaf stress level negatively affected photosynthesis. The photosynthesis rates at the heavily impacted location had recovered to the status of the control location about 140 days after the initial impact, while the impact at the medium impact location was never severe enough to make photosynthesis significantly lower than that at the control location over the study period. The uncertainty in modeling photosynthesis rates mainly came from the individual and micro-site scales, and to a lesser extent from the leaf scale

    Rhizosphere Microbial Communities of \u3ci\u3eSpartina alternifloa\u3c/i\u3e and \u3ci\u3eJuncus roemerianus\u3c/i\u3e From Restored and Natural Tidal Marshes on Deer Island, Mississippi

    Get PDF
    The U. S. Gulf of Mexico is experiencing a dramatic increase in tidal marsh restoration actions, which involves planting coastal areas with smooth cordgrass (Spartina alterniflora) and black needlerush (Juncus roemerianus) for erosion control and to provide habitat for fish and wildlife. It can take decades for sedimentary cycles in restored marshes to approach reference conditions, and the contribution of the sediment microbial communities to these processes is poorly elucidated. In this study, we addressed this gap by comparing rhizosphere microbiomes of S. alterniflora and J. roemerianus from two restored marshes and a natural reference marsh located at Deer Island, MS. Our results revealed that plants from the restored and reference areas supported similar microbial diversity indicating the rapid colonization of planted grasses with indigenous soil microbiota. Although close in composition, the microbial communities from the three studied sites differed significantly in the relative abundance of specific taxa. The observed differences are likely driven by the host plant identity and properties of sediment material used for the creation of restored marshes. Some of the differentially distributed groups of bacteria include taxa involved in the cycling of carbon, nitrogen, and sulfur, and may influence the succession of vegetation at the restored sites to climax condition. We also demonstrated that plants from the restored and reference sites vary in the frequency of culturable rhizobacteria that exhibit traits commonly associated with the promotion of plant growth and suppression of phytopathogenic fungi. Our findings will contribute to the establishment of benchmarks for the assessment of the outcome of coastal restoration projects in the Gulf of Mexico and better define factors that affect the long-term resiliency of tidal marshes and their vulnerability to climate change

    Rhizosphere Microbial Communities of Spartina alterniflora and Juncus roemerianus From Restored and Natural Tidal Marshes on Deer Island, Mississippi

    Get PDF
    The U. S. Gulf of Mexico is experiencing a dramatic increase in tidal marsh restoration actions, which involves planting coastal areas with smooth cordgrass (Spartina alterniflora) and black needlerush (Juncus roemerianus) for erosion control and to provide habitat for fish and wildlife. It can take decades for sedimentary cycles in restored marshes to approach reference conditions, and the contribution of the sediment microbial communities to these processes is poorly elucidated. In this study, we addressed this gap by comparing rhizosphere microbiomes of S. alterniflora and J. roemerianus from two restored marshes and a natural reference marsh located at Deer Island, MS. Our results revealed that plants from the restored and reference areas supported similar microbial diversity indicating the rapid colonization of planted grasses with indigenous soil microbiota. Although close in composition, the microbial communities from the three studied sites differed significantly in the relative abundance of specific taxa. The observed differences are likely driven by the host plant identity and properties of sediment material used for the creation of restored marshes. Some of the differentially distributed groups of bacteria include taxa involved in the cycling of carbon, nitrogen, and sulfur, and may influence the succession of vegetation at the restored sites to climax condition. We also demonstrated that plants from the restored and reference sites vary in the frequency of culturable rhizobacteria that exhibit traits commonly associated with the promotion of plant growth and suppression of phytopathogenic fungi. Our findings will contribute to the establishment of benchmarks for the assessment of the outcome of coastal restoration projects in the Gulf of Mexico and better define factors that affect the long-term resiliency of tidal marshes and their vulnerability to climate change

    Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems

    Get PDF
    Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change.Peer reviewe

    Transport and Persistence of Drifting Macroalgae (Rhodophyta) are Strongly Influenced By Flow Velocity and Substratum Complexity In Tropical Seagrass Habitats

    No full text
    Currents induced by tidal circulation and wind in shallow tropical seagrass habitats can influence the distribution of drifting macroalgae. In Florida, drift algae are mostly comprised of 5 to 10 genera of Rhodophyta (red algae), with 1 or 2 dominant species. Drift clump transport was investigated through manipulative experiments. Increasing flow velocities entrained and transported clumps of drift algae; transport speeds were 50 to 67 % of flow velocity and did not vary statistically significantly between clump sizes tested. The roughness of the substratum influenced transport speeds, with moderate to dense monospecific turtlegrass Thalassia testudinum reducing the speed of transport compared to bare substratum. Mixed seagrass substrata (T testudinum and Halodule wrightii) further inhibited transport of drift clumps by more frequent entangling compared to the bare and monospecific substrata. Persistence of drift algae was inversely related to flow conditions, with longer persistence at low flow velocities

    Hydroponic Versus Rooted Growth of \u3ci\u3eZostera marina\u3c/i\u3e L. (Eelgrass)

    No full text
    Seagrass fragments and seeds are important dispersal mechanisms by which individuals can be transported to new habitats. While dispersal distances of these free-floating stages have been recently investigated in some detail, almost nothing is known about how long fragments or seedlings may remain viable in the water-column. This study reports on the results of an experiment in which both mature and seedling life-history stages of the temperate seagrass, Zostera marina L. were successfully maintained hydroponically over a 1-month-period. It is suggested that a potential application of this hydroponic growth approach could be seedling culture for restoration activities

    Leaf Wand for Measuring Chlorophyll Fluorescence On Cylindrical Leaves and Its Application On \u3ci\u3eJuncus roemerianus\u3c/i\u3e (Black Needlerush)

    No full text
    Chlorophyll fluorescence is a well established technique to rapidly and non-invasively determine photosynthesis parameters in plant leaves. It can be used in both laboratory and field settings, and frequently dark-adaptation of a leaf sample is called for. In the field, this can be accomplished on flat leaves using standard leaf clips supplied by instrument manufacturers. However, not all plant leaves are flat, many are cylindrical or otherwise three-dimensional in shape. The standard leaf clip does not close fully on three-dimensional leaves, therefore, does not allow the sample to be properly dark adapted in the field. A new leaf “wand” was developed that can be slipped over an entire cylindrical leaf or culm of rushes and sedges for both lightand dark-adapted measurements. This new leaf wand is compared to the standard leaf clip (DLC-8) using a Walz mini-PAM on Juncus roemerianus (Black needlerush). Results indicate that darkadapted yield measurements are not significantly different between leaf clips, while light-adapted yields are higher with the leaf wand. The potential sources of difference in the optical path of the excitation light and fluorescence return are discussed and compared between leaf clips. Construction of specialized leaf wands should be considered for any leaves that are not flat and therefore do not fit the standard leaf clip for complete dark-adaptation under field conditions
    corecore