8 research outputs found

    Developmental and adult characterization of secretagogin expressing amacrine cells in zebrafish retina

    No full text
    Calcium binding proteins show stereotypical expression patterns within diverse neuron types across the central nervous system. Here, we provide a characterization of developmental and adult secretagogin-immunolabelled neurons in the zebrafish retina with an emphasis on co-expression of multiple calcium binding proteins. Secretagogin is a recently identified and cloned member of the F-hand family of calcium binding proteins, which labels distinct neuron populations in the retinas of mammalian vertebrates. Both the adult distribution of secretagogin labeled retinal neurons as well as the developmental expression indicative of the stage of neurogenesis during which this calcium binding protein is expressed was quantified. Secretagogin expression was confined to an amacrine interneuron population in the inner nuclear layer, with monostratified neurites in the center of the inner plexiform layer and a relatively regular soma distribution (regularity index > 2.5 across central-peripheral areas). However, only a subpopulation (~60%) co-labeled with gamma-aminobutyric acid as their neurotransmitter, suggesting that possibly two amacrine subtypes are secretagogin immunoreactive. Quantitative co-labeling analysis with other known amacrine subtype markers including the three main calcium binding proteins parvalbumin, calbindin and calretinin identifies secretagogin immunoreactive neurons as a distinct neuron population. The highest density of secretagogin cells of ~1800 cells / mm2 remained relatively evenly along the horizontal meridian, whilst the density dropped of to 125 cells / mm2 towards the dorsal and ventral periphery. Thus, secretagogin represents a new amacrine label within the zebrafish retina. The developmental expression suggests a possible role in late stage differentiation. This characterization forms the basis of functional studies assessing how the expression of distinct calcium binding proteins might be regulated to compensate for the loss of one of the others

    Fate bias during neural regeneration adjusts dynamically without recapitulating developmental fate progression

    No full text
    Abstract Background Regeneration of neurons in the central nervous system is poor in humans. In other vertebrates neural regeneration does occur efficiently and involves reactivation of developmental processes. Within the neural retina of zebrafish, Müller glia are the main stem cell source and are capable of generating progenitors to replace lost neurons after injury. However, it remains largely unknown to what extent Müller glia and neuron differentiation mirror development. Methods Following neural ablation in the zebrafish retina, dividing cells were tracked using a prolonged labelling technique. We investigated to what extent extrinsic feedback influences fate choices in two injury models, and whether fate specification follows the histogenic order observed in development. Results By comparing two injury paradigms that affect different subpopulations of neurons, we found a dynamic adaptability of fate choices during regeneration. Both injuries followed a similar time course of cell death, and activated Müller glia proliferation. However, these newly generated cells were initially biased towards replacing specifically the ablated cell types, and subsequently generating all cell types as the appropriate neuron proportions became re-established. This dynamic behaviour has implications for shaping regenerative processes and ensuring restoration of appropriate proportions of neuron types regardless of injury or cell type lost. Conclusions Our findings suggest that regenerative fate processes are more flexible than development processes. Compared to development fate specification we observed a disruption in stereotypical birth order of neurons during regeneration Understanding such feedback systems can allow us to direct regenerative fate specification in injury and diseases to regenerate specific neuron types in vivo

    Secretagogin expression in embryonic and adult zebrafish retina.

    No full text
    <p>Micrographs of vertical sections through zebrafish retina immunohistochemically labeled for secretagogin (SCGN–green) with nuclei counterstained by DAPI (blue). (A–E) Sections through retinas at 1–5 days post fertilization (dpf) show earliest secretagogin positive cells detected at 3 dpf (C) and maintained at subsequent days. (F) Collage through retinal section in 6 month old zebrafish. Secretagogin expression in the amacrine layer in the inner half of the inner nuclear layer (INL) remains strong throughout adulthood. (F’) Higher magnification inset of boxed region in F shows secretagogin labeled with stained processes showing monostratified band in the center of the inner plexiform layer (IPL). OS: outer segments; ONL: outer nuclear layer; OPL: outer plexiform layer; GCL: ganglion cell layer. Scale bar (E) for A-E is 50 μm, scale bar (F) is 100 μm, scale bar (F’) is 20 μm.</p

    Secretagogin positive cells from a regular mosaic with highest density along the horizontal midline.

    No full text
    <p>(A, B) Micrograph collage and schematic showing secretagogin immunostaining in the inner nuclear layer of a flat mounted whole adult zebrafish retina. (C, D) Density of secretagogin labeled cells across the nasal-temporal (F) or dorsal-ventral (G) axes indicate high even density along the horizontal meridian, with the density along the dorsal-ventral axis peaking in central retina and decreasing towards the periphery (n = 20–21 ROIs for each of n = 3 adult eyes). Density was counted in ROIs (200 μm x 200 μm) every 250 μm until the edge of the retina. (E–G) Individual examples showing nearest neighbor analysis of region of interest (200 μm x 200 μm) indicated by boxed regions in B. Secretagogin labeled cells at any eccentricity are distributed regularly. ROIs were located at 250 μm, 750 μm and 1250 μm distance from the optic nerve center. Scale bar (A) is 200 μm.</p

    Comparative expression of secretagogin and other calcium binding proteins within the zebrafish retina.

    No full text
    <p>(A–C) Micrographs showing cross-sections through zebrafish retina at 5 days postfertilization. Higher magnification of boxed regions in each row show secretagogin expression in green and other calcium binding protein expression in red: Parvalbumin (PV–A), Calbindin (CB–B), Calretinin (CR–C). (D–F) Pie charts show quantification of singe and double labeling (asterisks). Secretagogin labeled cells are mutually exclusive from parvalbumin (D) expressing cells, but overlap partially with calbindin (E) and represent a subpopulation of calretinin (F) expressing cells. Scale bar (C) for A–C is 50 μm, scale bar (C”‘) for A’–C”‘ is 20 μm.</p
    corecore