27 research outputs found

    On the choice of linkage statistics

    Get PDF
    Three LOD score statistics are often used for genome-wide linkage analysis: the maximum LOD score, the LOD score statistic proposed by Kong and Cox, both based on the allele-sharing between affected sib pairs, and the maximization of the LOD score function of Morton on two genetic models and an heterogeneity parameter

    Analysis of GWAS-nominated loci for lung cancer and COPD revealed a new asthma locus

    Get PDF
    Background: Asthma, lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are three respiratory diseases characterized by complex mechanisms underlying and genetic predispositions, with asthma having the highest calculated heritability. Despite efforts deployed in the last decades, only a small part of its heritability has been elucidated. It was hypothesized that shared genetic factors by these three diseases could help identify new asthma loci. Methods: GWAS-nominated LC and COPD loci were selected among studies performed in Caucasian cohorts using the GWAS Catalog. Genetic analyses were carried out for these loci in the Saguenay–Lac-Saint-Jean (SLSJ) asthma familial cohort and then replicated in two independent cohorts (the Canadian Cohort Obstructive Lung Disease [CanCOLD] and the Epidemiological Study of the Genetics and Environment of Asthma [EGEA]). Results: Analyses in the SLSJ cohort identified 2851 and 4702 genetic variants to be replicated in the CanCOLD and EGEA cohorts for LC and COPD loci respectively. Replication and meta-analyses allowed the association of one new locus with asthma, 2p24.3, from COPD studies. None was associated from LC studies reported. Conclusions: The approach used in this study contributed to better understand the heritability of asthma with shared genetic backgrounds of respiratory diseases

    Identification of OCA2 as a novel locus for the co-morbidity of asthma-plus-eczema

    Get PDF
    Background: Numerous genes have been associated with the three most common allergic diseases (asthma, allergic rhinitis or eczema) but these genes explain only a part of the heritability. In the vast majority of genetic studies, complex phenotypes such as co- morbidity of two of these diseases, have not been considered. This may partly explain missing heritability. Objective: To identify genetic variants specifically associated with the co-morbidity of asthma-plus-eczema. Methods: We first conducted a meta-analysis of four GWAS (Genome-Wide Association Study) of the combined asthma-plus-eczema phenotype (total of 8807 European-ancestry subjects of whom 1208 subjects had both asthma and eczema). To assess whether the association with SNP(s) was specific to the co- morbidity, we also conducted a meta-analysis of homogeneity test of association according to disease status (“asthma-plus-eczema” vs. the presence of only one disease “asthma only or eczema only”). We then used a joint test by combining the two test statistics from the co-morbidity-SNP association and the phenotypic heterogeneity of SNP effect meta-analyses. Results: Seven SNPs were detected for specific association to the asthma-plus-eczema co-morbidity, two with significant and five with suggestive evidence using the joint test after correction for multiple testing. The two significant SNPs are located in the OCA2 gene (Oculocutaneous Albinism II), a new locus never detected for significant evidence of association with any allergic disease. This gene is a promising candidate gene, because of its link to skin and lung diseases, and to epithelial barrier and immune mechanisms. Conclusion: Our study underlines the importance of studying sub-phenotypes as co-morbidities to detect new susceptibility genes

    Genome-wide interaction study of early-life smoking exposure on time-to-asthma onset in childhood

    Get PDF
    Background: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. Objective: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood.Methods: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totaling 8,273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analyzed.Results: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P=4.3x10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P<5x10-6) were found at three other loci: 20p12 (rs13037508 within MACROD2; P=4.9x10-7), 14q22 (rs7493885 near NIN; P=2.9x10-6) and 2p22 (rs232542 near CYP1B1; P=4.1x10-6). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings.Conclusion and Clinical Relevance: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms

    Meta-analysis identifies seven susceptibility loci involved in the atopic March

    Get PDF
    Eczema often precedes the development of asthma in a disease course called the a 'atopic march'. To unravel the genes underlying this characteristic pattern of allergic disease, we conduct a multi-stage genome-wide association study on infantile eczema followed by childhood asthma in 12 populations including 2,428 cases and 17,034 controls. Here we report two novel loci specific for the combined eczema plus asthma phenotype, which are associated with allergic disease for the first time; rs9357733 located in EFHC1 on chromosome 6p12.3 (OR 1.27; P=2.1 Ă— 10 a'8) and rs993226 between TMTC2 and SLC6A15 on chromosome 12q21.3 (OR 1.58; P=5.3 Ă— 10 a'9). Additional susceptibility loci identified

    Analysis of GWAS-nominated loci for lung cancer and COPD revealed a new asthma locus

    No full text
    International audienceBackground: Asthma, lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are three respiratory diseases characterized by complex mechanisms underlying and genetic predispositions, with asthma having the highest calculated heritability. Despite efforts deployed in the last decades, only a small part of its heritability has been elucidated. It was hypothesized that shared genetic factors by these three diseases could help identify new asthma loci. Methods: GWAS-nominated LC and COPD loci were selected among studies performed in Caucasian cohorts using the GWAS Catalog. Genetic analyses were carried out for these loci in the Saguenay-Lac-Saint-Jean (SLSJ) asthma familial cohort and then replicated in two independent cohorts (the Canadian Cohort Obstructive Lung Disease [Can-COLD] and the Epidemiological Study of the Genetics and Environment of Asthma [EGEA]). Results: Analyses in the SLSJ cohort identified 2851 and 4702 genetic variants to be replicated in the CanCOLD and EGEA cohorts for LC and COPD loci respectively. Replication and meta-analyses allowed the association of one new locus with asthma, 2p24.3, from COPD studies. None was associated from LC studies reported. Conclusions: The approach used in this study contributed to better understand the heritability of asthma with shared genetic backgrounds of respiratory diseases

    Analysis of GWAS-nominated loci for lung cancer and COPD revealed a new asthma locus

    No full text
    International audienceBackground: Asthma, lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are three respiratory diseases characterized by complex mechanisms underlying and genetic predispositions, with asthma having the highest calculated heritability. Despite efforts deployed in the last decades, only a small part of its heritability has been elucidated. It was hypothesized that shared genetic factors by these three diseases could help identify new asthma loci. Methods: GWAS-nominated LC and COPD loci were selected among studies performed in Caucasian cohorts using the GWAS Catalog. Genetic analyses were carried out for these loci in the Saguenay-Lac-Saint-Jean (SLSJ) asthma familial cohort and then replicated in two independent cohorts (the Canadian Cohort Obstructive Lung Disease [Can-COLD] and the Epidemiological Study of the Genetics and Environment of Asthma [EGEA]). Results: Analyses in the SLSJ cohort identified 2851 and 4702 genetic variants to be replicated in the CanCOLD and EGEA cohorts for LC and COPD loci respectively. Replication and meta-analyses allowed the association of one new locus with asthma, 2p24.3, from COPD studies. None was associated from LC studies reported. Conclusions: The approach used in this study contributed to better understand the heritability of asthma with shared genetic backgrounds of respiratory diseases
    corecore