48 research outputs found
Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences
<p>Abstract</p> <p>Background</p> <p>Ovarian cancer ascites fluid (OCAF), contains malignant cells, is usually present in women with an advanced stage disease and currently has no effective therapy. Hence, we developed a new therapy strategy to target the expression of diphtheria toxin gene under the control of H19 regulatory sequences in ovarian tumor cells. H19 RNA is present at high levels in human cancer tissues (including ovarian cancer), while existing at a nearly undetectable level in the surrounding normal tissue.</p> <p>Methods</p> <p>H19 gene expression was tested in cells from OCAF by the in-situ hybridization technique (ISH) using an H19 RNA probe. The therapeutic potential of the toxin vector DTA-H19 was tested in ovarian carcinoma cell lines and in a heterotopic animal model for ovarian cancer.</p> <p>Results</p> <p>H19 RNA was detected in 90% of patients with OCAF as determined by ISH. Intratumoral injection of DTA-H19 into ectopically developed tumors caused 40% inhibition of tumor growth.</p> <p>Conclusion</p> <p>These observations may be the first step towards a major breakthrough in the treatment of human OCAF, while the effect in solid tumors required further investigation. It should enable us to identify likely non-responders in advance, and to treat patients who are resistant to all known therapies, thereby avoiding treatment failure.</p
Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types
Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
Recommended from our members
Averting biodiversity collapse in tropical forest protected areas
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon¹⁻³. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses⁴⁻⁹. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world’s major tropical regions. Our analysis reveals great variation in reserve ‘health’: about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.Keywords: Ecology, Environmental scienc
Reduced Abundance and Subverted Functions of Proteins in Prion-Like Diseases: Gained Functions Fascinate but Lost Functions Affect Aetiology
Prions have served as pathfinders that reveal many aspects of proteostasis in neurons. The recent realization that several prominent neurodegenerative diseases spread via a prion-like mechanism illuminates new possibilities for diagnostics and therapeutics. Thus, key proteins in Alzheimer Disease and Amyotrophic lateral sclerosis (ALS), including amyloid-β precursor protein, Tau and superoxide dismutase 1 (SOD1), spread to adjacent cells in their misfolded aggregated forms and exhibit template-directed misfolding to induce further misfolding, disruptions to proteostasis and toxicity. Here we invert this comparison to ask what these prion-like diseases can teach us about the broad prion disease class, especially regarding the loss of these key proteins’ function(s) as they misfold and aggregate. We also consider whether functional amyloids might reveal a role for subverted protein function in neurodegenerative disease. Our synthesis identifies SOD1 as an exemplar of protein functions being lost during prion-like protein misfolding, because SOD1 is inherently unstable and loses function in its misfolded disease-associated form. This has under-appreciated parallels amongst the canonical prion diseases, wherein the normally folded prion protein, PrPC, is reduced in abundance in fatal familial insomnia patients and during the preclinical phase in animal models, apparently via proteostatic mechanisms. Thus while template-directed misfolding and infectious properties represent gain-of-function that fascinates proteostasis researchers and defines (is required for) the prion(-like) diseases, loss and subversion of the functions attributed to hallmark proteins in neurodegenerative disease needs to be integrated into design towards effective therapeutics. We propose experiments to uniquely test these ideas
An ancient conserved role for prion protein in learning and memory
The misfolding of cellular prion protein (PrPC) to form PrP Scrapie (PrPSc) is an exemplar of toxic gain-of-function mechanisms inducing propagated protein misfolding and progressive devastating neurodegeneration. Despite this, PrPC function in the brain is also reduced and subverted during prion disease progression; thus understanding the normal function of PrPC in healthy brains is key. Disrupting PrPC in mice has led to a myriad of controversial functions that sometimes map onto disease symptoms, including a proposed role in memory or learning. Intriguingly, PrPC interaction with amyloid beta (Aβ) oligomers at synapses has also linked its function to Alzheimer's disease and dementia in recent years. We set out to test the involvement of PrPC in memory using a disparate animal model, the zebrafish. Here we document an age-dependent memory decline in prp2−/− zebrafish, pointing to a conserved and ancient role of PrPC in memory. Specifically, we found that aged (3-year-old) prp2−/− fish performed poorly in an object recognition task relative to age-matched prp2+/+ fish or 1-year-old prp2−/− fish. Further, using a novel object approach (NOA) test, we found that aged (3-year-old) prp2−/− fish approached the novel object more than either age-matched prp2+/+ fish or 1-year-old prp2−/− fish, but did not have decreased anxiety when we tested them in a novel tank diving test. Taken together, the results of the NOA and novel tank diving tests suggest an altered cognitive appraisal of the novel object in the 3-year-old prp2−/− fish. The learning paradigm established here enables a path forward to study PrPC interactions of relevance to Alzheimer's disease and prion diseases, and to screen for candidate therapeutics for these diseases. The findings underpin a need to consider the relative contributions of loss- versus gain-of-function of PrPC during Alzheimer's and prion diseases, and have implications upon the prospects of several promising therapeutic strategies
Summary of phenotypes attained and number of trials per treatment applied.
1<p>Treatments were combinations of morpholino (MO, designed to block normal splicing) gene knockdown and/or mRNA gene expression reagents.</p>2<p>A translation blocking MO (TB-MO) was used as an independent knockdown reagent to validate some results.</p
APP interactions with PrP are conserved from fish to mammals. A. Mouse <i>Prnp</i> can replace zebrafish <i>prp1</i> in the context of its genetic interaction with <i>appa</i>.
<p>Co-injecting zebrafish <i>prp1</i> mRNA, in concert with the Appa+Prp1 co-knockdown, rescues the observed phenotypes (first two sets of bars). <i>prp1</i>’s paralog, zebrafish <i>prp2</i>, does <u>not</u> rescue this co-knockdown, nor does another prion family member from zebrafish, <i>shadoo1</i>. In contrast, mouse <i>Prnp</i> mRNA (<i>moPrP</i>) can partially alleviate the Appa & Prp1 co-knockdown. Thus mouse PrP can replace Prp1 in the context of its interaction with App, indeed with greater efficacy than zebrafish orthologs. * p<0.05. **p<0.01. <b>B. Human </b><b><i>APP</i></b><b> can replace zebrafish </b><b><i>appa</i></b><b> in the context of its genetic interaction with </b><b><i>prp1</i></b><b>.</b> We established above that <i>appa</i> mRNA from zebrafish can rescue the co-knockdown of Appa+Prp1; Here we use <i>APPb</i> as a negative control comparator mRNA (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051305#pone-0051305-g003" target="_blank">Fig. 3K</a>). Human <i>APP<sub>695</sub></i> mRNA (huAPPwt) was effective in replacing zebrafish APPa in the context of Prp1 knockdown. <b>C. Co-immunoprecipitation demonstrates an interaction between human PrP and human APP in N2a cells.</b> Left: Inputs as whole cell lysate showing expression of human PrP using the human PrP specific antibody 3F4 in N2a cells (wild type and stably transfected with human APP) transiently transfected with pcDNA3-human PrP construct but not with empty vector (“EV”). Expression of human APP is only observed in N2a cells with human APP using 6E10 antibody, specific for human APP. Input represented 7% of whole cell lysate used for co-immunoprecipitation. Right: whole cell lysates were co-immunoprecipitated using a human specific anti-APP antibody followed by immunoblotting with a human PrP specific antibody. Detection of human APP bound human PrP was observed only in N2a cells stably transfected with human APP and transiently transfected with human PrP construct. A no lysate immunoprecipitation experiment was included as an additional negative control.</p
Apoptosis is synergistically increased when Appa and Prp1 levels are reduced. A–D.
<p>Zebrafish injected with a control morpholino (MO), low dose (sub-effective) <i>prp1</i> MO, low dose (sub-effective) <i>appa</i> MO, or a combination of sub-effective <i>appa</i> and <i>prp1</i> MOs (A–D, respectively) showed increased abundance of activated-caspase 3-positive cells (A′–D′, respectively). Higher doses of MOs used in this same assay showed individual MOs can also produce this effect (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051305#pone.0051305.s007" target="_blank">Fig. S7</a>). <b>E.</b> Activated caspase 3-positive cells were slightly increased when low doses of <i>prp1</i> or <i>appa</i> MOs were injected alone and synergistically increased when they were combined in one injection solution. N = 5. ** = P<0.01, * = P<0.05.</p
<i>appa</i> interacts with <i>prp1,</i> but <i>appb</i> does not.
<p>Panels <b>A–E</b>: Sub-effective doses of <i>appa</i> and <i>prp1</i> gene knockdown synergize to produce an overt phenotype in the fish. Fish injected with a control morpholino (MO) (<b>A</b>), a sub-effective dose of <i>appa</i> (<b>B</b>) or <i>prp1</i> (<b>C</b>) MO fail to display any signs of CNS cell death or disruptions in development, i.e. no severe phenotypes. <b>D.</b> When sub-effective doses of <i>appa</i> and <i>prp1</i> are combined a severe phenotype emerges comprised of prominent morphological disruptions and an overt appearance of cell death within the CNS. <b>E.</b> The abundance of fish with normal morphology observed is significantly reduced, and the percentage of fish displaying cell death within the CNS is significantly increased when sub-effective doses of <i>appa</i> and <i>prp1</i> MOs are combined. ** = P<0.01. Panels <b>F–J</b> present a similar experimental design to panels A–E, but represent <i>appb</i> knockdown instead of <i>appa</i>. When a sub-effective doses of <i>appb</i> and <i>prp1</i> MOs are combined there is no significant increase in the number of fish showing developmental abnormalities or cell death within the CNS. <b>K</b>. Despite Appa and Appb being largely redundant during normal development (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051305#pone-0051305-g002" target="_blank">Fig. 2</a>), they cannot replace each other when PrP1 abundance is reduced. <i>appa</i> mRNA is able to alleviate the phenotype caused by co-injection of sub-effective doses of <i>appa</i> and <i>prp1</i> MOs. <i>appa</i> mRNA significantly reduced the percentage of fish displaying a severe phenotype. <i>appb</i> mRNA at an equivalent dose failed to reduce the percentage of fish displaying a phenotype. ** = P<0.01. <b>L. </b><i>app</i> mRNAs with stop codon mutations are not able to rescue the <i>app</i> or <i>appa</i>+<i>prp1</i> knockdown phenotypes. Data from the mutations S3X;E5X and 14_15 insT are shown (WT = wild type). Further analysis of these mRNAs and similar ones for <i>appb</i> was carried out in other knockdown backgrounds (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0051305#pone.0051305.s005" target="_blank">Fig. S5</a>).</p