5 research outputs found

    Task analysis method for procedural training curriculum development

    Get PDF
    A central venous catheter (CVC) is an important medical tool used in critical care and emergent situations. Integral to proper care in many circumstances, insertion of a CVC introduces the risk of central line-associated blood stream infections and mechanical adverse events; proper training is important for safe CVC insertion. Cognitive task analysis (CTA) methods have been successfully implemented in the medical field to improve the training of postgraduate medical trainees, but can be very time-consuming to complete and require a significant time commitment from many subject matter experts (SMEs). Many medical procedures such as CVC insertion are linear processes with well-documented procedural steps. These linear procedures may not require a traditional CTA to gather the information necessary to create a training curriculum. Accordingly, a novel, streamlined CTA method designed primarily to collect cognitive cues for linear procedures was developed to be used by medical professionals with minimal CTA training. This new CTA methodology required fewer trained personnel, fewer interview sessions, and less time commitment from SMEs than a traditional CTA. Based on this study, a streamlined CTA methodology can be used to efficiently gather cognitive information on linear medical procedures for the creation of resident training curricula and procedural skills assessments

    Research capacity. Enabling the genomic revolution in Africa.

    No full text
    no availabl

    Evolution over Time of Ventilatory Management and Outcome of Patients with Neurologic Disease∗

    No full text
    OBJECTIVES: To describe the changes in ventilator management over time in patients with neurologic disease at ICU admission and to estimate factors associated with 28-day hospital mortality. DESIGN: Secondary analysis of three prospective, observational, multicenter studies. SETTING: Cohort studies conducted in 2004, 2010, and 2016. PATIENTS: Adult patients who received mechanical ventilation for more than 12 hours. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among the 20,929 patients enrolled, we included 4,152 (20%) mechanically ventilated patients due to different neurologic diseases. Hemorrhagic stroke and brain trauma were the most common pathologies associated with the need for mechanical ventilation. Although volume-cycled ventilation remained the preferred ventilation mode, there was a significant (p < 0.001) increment in the use of pressure support ventilation. The proportion of patients receiving a protective lung ventilation strategy was increased over time: 47% in 2004, 63% in 2010, and 65% in 2016 (p < 0.001), as well as the duration of protective ventilation strategies: 406 days per 1,000 mechanical ventilation days in 2004, 523 days per 1,000 mechanical ventilation days in 2010, and 585 days per 1,000 mechanical ventilation days in 2016 (p < 0.001). There were no differences in the length of stay in the ICU, mortality in the ICU, and mortality in hospital from 2004 to 2016. Independent risk factors for 28-day mortality were age greater than 75 years, Simplified Acute Physiology Score II greater than 50, the occurrence of organ dysfunction within first 48 hours after brain injury, and specific neurologic diseases such as hemorrhagic stroke, ischemic stroke, and brain trauma. CONCLUSIONS: More lung-protective ventilatory strategies have been implemented over years in neurologic patients with no effect on pulmonary complications or on survival. We found several prognostic factors on mortality such as advanced age, the severity of the disease, organ dysfunctions, and the etiology of neurologic disease
    corecore