15 research outputs found

    Soil erosion modelling: A global review and statistical analysis

    Get PDF
    To gain a better understanding of the global application of soil erosion prediction models, we comprehensivelyreviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the re-gions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv)how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To per-form this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. Theresulting database, named‘Global Applications of Soil Erosion Modelling Tracker (GASEMT)’, includes 3030 indi-vidual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluatedand transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insightsinto the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to sup-port the upcoming country-based United Nations global soil-erosion assessment in addition to helping to informsoil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is anopen-source database available to the entire user-community to develop research, rectify errors, andmakefutureexpansion

    Soil erosion modelling: A bibliometric analysis

    Get PDF
    Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling characteristics that can help identify steps needed to enhance the research conducted in this field. Therefore, a detailed bibliometric analysis, including investigation of collaboration networks and citation patterns, should be conducted. The updated version of the Global Applications of Soil Erosion Modelling Tracker (GASEMT) database contains information about citation characteristics and publication type. Here, we investigated the impact of the number of authors, the publication type and the selected journal on the number of citations. Generalized boosted regression tree (BRT) modelling was used to evaluate the most relevant variables related to soil erosion modelling. Additionally, bibliometric networks were analysed and visualized. This study revealed that the selection of the soil erosion model has the largest impact on the number of publication citations, followed by the modelling scale and the publication\u27s CiteScore. Some of the other GASEMT database attributes such as model calibration and validation have negligible influence on the number of citations according to the BRT model. Although it is true that studies that conduct calibration, on average, received around 30% more citations, than studies where calibration was not performed. Moreover, the bibliographic coupling and citation networks show a clear continental pattern, although the co-authorship network does not show the same characteristics. Therefore, soil erosion modellers should conduct even more comprehensive review of past studies and focus not just on the research conducted in the same country or continent. Moreover, when evaluating soil erosion models, an additional focus should be given to field measurements, model calibration, performance assessment and uncertainty of modelling results. The results of this study indicate that these GASEMT database attributes had smaller impact on the number of citations, according to the BRT model, than anticipated, which could suggest that these attributes should be given additional attention by the soil erosion modelling community. This study provides a kind of bibliographic benchmark for soil erosion modelling research papers as modellers can estimate the influence of their paper

    Soil erosion modelling: A global review and statistical analysis

    Get PDF
    To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017.We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named ‘Global Applications of Soil ErosionModelling Tracker (GASEMT)’, includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosionmodels and model applicationsworldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, andmake future expansions

    Soil erosion modelling: A bibliometric analysis

    Get PDF
    Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling characteristics that can help identify steps needed to enhance the research conducted in this field. Therefore, a detailed bibliometric analysis, including investigation of collaboration networks and citation patterns, should be conducted. The updated version of the Global Applications of Soil Erosion Modelling Tracker (GASEMT) database contains information about citation characteristics and publication type. Here, we investigated the impact of the number of authors, the publication type and the selected journal on the number of citations. Generalized boosted regression tree (BRT) modelling was used to evaluate the most relevant variables related to soil erosion modelling. Additionally, bibliometric networks were analysed and visualized. This study revealed that the selection of the soil erosion model has the largest impact on the number of publication citations, followed by the modelling scale and the publication’s CiteScore. Some of the other GASEMT database attributes such as model calibration and validation have negligible influence on the number of citations according to the BRT model. Although it is true that studies that conduct calibration, on average, received around 30% more citations, than studies where calibration was not performed. Moreover, the bibliographic coupling and citation networks show a clear continental pattern, although the co-authorship network does not show the same characteristics. Therefore, soil erosion modellers should conduct even more comprehensive review of past studies and focus not just on the research conducted in the same country or continent. Moreover, when evaluating soil erosion models, an additional focus should be given to field measurements, model calibration, performance assessment and uncertainty of modelling results. The results of this study indicate that these GASEMT database attributes had smaller impact on the number of citations, according to the BRT model, than anticipated, which could suggest that these attributes should be given additional attention by the soil erosion modelling community. This study provides a kind of bibliographic benchmark for soil erosion modelling research papers as modellers can estimate the influence of their paper

    Assessing the spatial variability of coefficients of landslide predictors in different regions of Romania using logistic regression

    No full text
    In landslide susceptibility assessment, an important issue is the correct identification of significant contributing factors, which leads to the improvement of predictions regarding this type of geomorphologic processes. In the scientific literature, different weightings are assigned to these factors, but contain large variations. This study aims to identify the spatial variability and range of variation for the coefficients of landslide predictors in different geographical conditions. Four sectors of 15 km × 15 km (225 km<sup>2</sup>) were selected for analysis from representative regions in Romania in terms of spatial extent of landslides, situated both on the hilly areas (the Transylvanian Plateau and Moldavian Plateau) and lower mountain region (Subcarpathians). The following factors were taken into consideration: elevation, slope angle, slope height, terrain curvature (mean, plan and profile), distance from drainage network, slope aspect, land use, and lithology. For each sector, landslide inventory, digital elevation model and thematic layers of the mentioned predictors were achieved and integrated in a georeferenced environment. The logistic regression was applied separately for the four study sectors as the statistical method for assessing terrain landsliding susceptibility. Maps of landslide susceptibility were produced, the values of which were classified by using the natural breaks method (Jenks). The accuracy of the logistic regression outcomes was evaluated using the ROC (receiver operating characteristic) curve and AUC (area under the curve) parameter, which show values between 0.852 and 0.922 for training samples, and between 0.851 and 0.940 for validation samples. The values of coefficients are generally confined within the limits specified by the scientific literature. In each sector, landslide susceptibility is essentially related to some specific predictors, such as the slope angle, land use, slope height, and lithology. The study points out that the coefficients assigned to the landslide predictors through logistic regression are capable to reveal some important characteristics in landslide manifestation. The study also shows that the logistic regression could be an alternative method to the current Romanian methodology for landslide susceptibility and hazard mapping

    Mapping viticultural potential in temperate climate areas. Case study: Bucium vineyard (Romania)

    Get PDF
    The paper presents the spatial distribution of ecological suitability for grape growing in Bucium vineyard (Romania), viticultural area with ecological characteristics representative for northern vineyards. The study is based on a complex methodology implying use of remote sensing, Geographical Information Systhems (GIS), climatic data, topographic and pedologic maps. Research reveal the low ecological potential of Bucium area, specialized, traditionally, in white table wines, sparkling wines and white quality wines. Data analysis shows that 30% of Bucium vineyard (281 ha of 928 ha) is inappropriate, in terms of climatic suitability, for vinifera varieties culture; 34% of the area (316 ha) has limited ecological potential, enough to produce white table wines and sparkling wines; 36% of the area (331 ha) is suitable for quality white wines. In the vineyard area was not registered suitable conditions for quality red wines production. Huglin’s heliothermal index values shows that the vineyard has climatic characteristics that allow culture of wine varieties with early and medium ripening. In terms of ecological suitability, it appears that the most favorable conditions offer Cetăţuia wine land, the eastern slope of the Doi Peri hill, eastern slope of Vişani hill, south-western slope of Bucium hill and southern slope of Pietrăria wine land

    Arable lands under the pressure of multiple land degradation processes. A global perspective

    No full text
    While agricultural systems are a major pillar in global food security, their productivity is currently threatened by many environmental issues triggered by anthropogenic climate change and human activities, such as land degradation. However, the planetary spatial footprint of land degradation processes on arable lands, which can be considered a major component of global agricultural systems, is still insufficiently well understood. This study analyzes the land degradation footprint on global arable lands, using complex geospatial data on certain major degradation processes, i.e. aridity, soil erosion, vegetation decline, soil salinization and soil organic carbon decline. By applying geostatistical techniques that are representative for identifying the incidence of the five land degradation processes in global arable lands, results showed that aridity is by far the largest singular pressure for these agricultural systems, affecting ~40% of the arable lands' area, which cover approximately 14 million km2 globally. It was found that soil erosion is another major degradation process, the unilateral impact of which affects ~20% of global arable systems. The results also showed that the two degradation processes simultaneously affect an additional ~7% of global arable lands, which makes this synergy the most common form of multiple pressure of land degradative conditions across the world's arable areas. The absolute statistical data showed that India, the United States, China, Brazil, Argentina, Russia and Australia are the most vulnerable countries in the world to the various pathways of arable land degradation. Also, in terms of percentages, statistical observations showed that African countries are the most heavily affected by arable system degradation. This study's findings can be useful for prioritizing agricultural management actions that can mitigate the negative effects of the two degradation processes or of others that currently affect many arable systems across the planet
    corecore