2,480 research outputs found

    Ageing test of the ATLAS RPCs at X5-GIF

    Full text link
    An ageing test of three ATLAS production RPC stations is in course at X5-GIF, the CERN irradiation facility. The chamber efficiencies are monitored using cosmic rays triggered by a scintillator hodoscope. Higher statistics measurements are made when the X5 muon beam is available. We report here the measurements of the efficiency versus operating voltage at different source intensities, up to a maximum counting rate of about 700Hz/cm^2. We describe the performance of the chambers during the test up to an overall ageing of 4 ATLAS equivalent years corresponding to an integrated charge of 0.12C/cm^2, including a safety factor of 5.Comment: 4 pages. Presented at the VII Workshop on Resistive Plate Chambers and Related Detectors; Clermont-Ferrand October 20th-22nd, 200

    The Study of TeV Variability and Duty Cycle of Mrk 421 from 3 Years of Observations with the Milagro Observatory

    Full text link
    TeV flaring activity with time scales as short as tens of minutes and an orphan TeV flare have been observed from the blazar Markarian 421 (Mrk 421). The TeV emission from Mrk 421 is believed to be produced by leptonic synchrotron self-Compton (SSC) emission. In this scenario, correlations between the X-ray and the TeV fluxes are expected, TeV orphan flares are hardly explained and the activity (measured as duty cycle) of the source at TeV energies is expected to be equal or less than that observed in X-rays if only SSC is considered. To estimate the TeV duty cycle of Mrk 421 and to establish limits on its variability at different time scales, we continuously observed Mrk 421 with the Milagro observatory. Mrk 421 was detected by Milagro with a statistical significance of 7.1 standard deviations between 2005 September 21 and 2008 March 15. The observed spectrum is consistent with previous observations by VERITAS. We estimate the duty cycle of Mrk 421 for energies above 1 TeV for different hypothesis of the baseline flux and for different flare selections and we compare our results with the X-ray duty cycle estimated by Resconi et al. 2009. The robustness of the results is discussed.Comment: 27 pages, 6 figures, ApJ accepte

    Comparative characterization of a wild type and transmembrane domain-deleted fatty acid amide hydrolase: identification of the transmembrane domain as a site for oligomerization

    Get PDF
    Fatty acid amide hydrolase (FAAH) is an integral membrane protein responsible for the hydrolysis of a number of primary and secondary fatty acid amides, including the neuromodulatory compounds anandamide and oleamide. Analysis of FAAH's primary sequence reveals the presence of a single predicted transmembrane domain at the extreme N-terminus of the enzyme. A mutant form of the rat FAAH protein lacking this N-terminal transmembrane domain (DeltaTM-FAAH) was generated and, like wild type FAAH (WT-FAAH), was found to be tightly associated with membranes when expressed in COS-7 cells. Recombinant forms of WT- and DeltaTM-FAAH expressed and purified from Escherichia coli exhibited essentially identical enzymatic properties which were also similar to those of the native enzyme from rat liver. Analysis of the oligomerization states of WT- and DeltaTM-FAAH by chemical cross-linking, sedimentation velocity analytical ultracentrifugation, and size exclusion chromatography indicated that both enzymes were oligomeric when membrane-bound and after solubilization. However, WT-FAAH consistently behaved as a larger oligomer than DeltaTM-FAAH. Additionally, SDS-PAGE analysis of the recombinant proteins identified the presence of SDS-resistant oligomers for WT-FAAH, but not for DeltaTM-FAAH. Self-association through FAAH's transmembrane domain was further demonstrated by a FAAH transmembrane domain-GST fusion protein which formed SDS-resistant dimers and large oligomeric assemblies in solution

    The Sensitivity of HAWC to High-Mass Dark Matter Annihilations

    Full text link
    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19 degrees North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi- TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from non-luminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross-section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross-sections below thermal. HAWC should also be sensitive to non-thermal cross-sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross-section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.Comment: 15 pages, 4 figures, version to be published in PR

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    “货郎儿(1)”推考

    Get PDF
    We describe the facility for RPC test with cosmic rays, designed and built at the laboratory of INFN and University of Naples. Trigger and tracking systems consist of a scintillator hodoscope and two drift chambers with track reconstruction resolution of similar to400 mum. Trigger is provided by the twofold coincidence of scintillators covering a surface of 1 m(2). Two step motors move chambers synchronously along the station for RPC scanning. Up to eight RPCs can be tested simultaneously. (C) 2003 Elsevier Science B.V. All rights reserved
    corecore