138 research outputs found

    Achieving an optimal trade-off between revenue and energy peak within a smart grid environment

    Get PDF
    We consider an energy provider whose goal is to simultaneously set revenue-maximizing prices and meet a peak load constraint. In our bilevel setting, the provider acts as a leader (upper level) that takes into account a smart grid (lower level) that minimizes the sum of users' disutilities. The latter bases its decisions on the hourly prices set by the leader, as well as the schedule preferences set by the users for each task. Considering both the monopolistic and competitive situations, we illustrate numerically the validity of the approach, which achieves an 'optimal' trade-off between three objectives: revenue, user cost, and peak demand

    Bilevel Network Design

    Get PDF
    This chapter is devoted to network design problems involving conflicting agents, referred to as the designer and the users, respectively. Such problems are best cast into the framework of bilevel programming, where the designer anticipates the reaction or rational users to its course of action, and fits many situations of interest. In this chapter, we consider four applications of very different nature, with a special focus on algorithmic issues

    Bilevel Modelling of Energy Pricing Problem

    Get PDF
    International audienceCost minimization problem of a smart grid operator is integrated into the revenue optimization problem of an energy provider. Bilevel programming approach is applied to model the problem. The results of a classical exact method and two heuristic methods are compared
    corecore