27 research outputs found

    Hot Topics in Biomedical Sciences

    Full text link

    Inhibition of brain energy metabolism by the α-keto acids accumulating in maple syrup urine disease

    Get PDF
    AbstractNeurological dysfunction is a common finding in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly known. In the present study, we investigated the effect of the in vitro effect of the branched chain α-keto acids (BCKA) accumulating in MSUD on some parameters of energy metabolism in cerebral cortex of rats. [14CO2] production from [14C] acetate, glucose uptake and lactate release from glucose were evaluated by incubating cortical prisms from 30-day-old rats in Krebs–Ringer bicarbonate buffer, pH 7.4, in the absence (controls) or presence of 1–5 mM of α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV) or α-ketoisovaleric acid (KIV). All keto acids significantly reduced 14CO2 production by around 40%, in contrast to lactate release and glucose utilization, which were significantly increased by the metabolites by around 42% in cortical prisms. Furthermore, the activity of the respiratory chain complex I–III was significantly inhibited by 60%, whereas the other activities of the electron transport chain, namely complexes II, II–III, III and IV, as well as succinate dehydrogenase were not affected by the keto acids. The results indicate that the major metabolites accumulating in MSUD compromise brain energy metabolism by blocking the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients

    Mitochondria and the Brain : Bioenergetics and Beyond

    No full text
    The view of mitochondria acting solely as a powerhouse of the cell is no longer accurate. Besides cell bioenergetics, primary targets of mitochondrial studies include their interplay with essential processes within the cell, including redox and calcium homeostasis, and apoptosis. Recent studies evidence the dynamic behavior of mitochondria, continuously moving, fusing, and dividing, and the interaction of these events with cellular degeneration and plasticity in neural cells. Our review summarizes novel data and technologies that are developed and applied to the identification and clarification of the mitochondrial role in neural plasticity using both cultured cells and in vivo approaches. The complete understanding and modulation of such mechanisms may represent a novel and promising therapeutic approach for treatment of diseases affecting central and peripheral nervous system

    D-glyceric aciduria

    No full text
    Inherited metabolic diseases are a heterogeneous group of diseases caused by a punctual defect in cell metabolism, resulting in the accumulation of toxic intermediate metabolites or in the lack of important biomolecules for adequate cell functioning. D-glyceric aciduria is an inherited disease caused by a deficiency of glycerate 2-kinase activity, whose pathophysiological mechanisms remain unknown. The main clinical and neurological symptoms seen in affected patients include progressive encephalopathy, hypotonia, psychomotor and mental retardation, microcephaly, seizures, speech delay, metabolic acidosis, and even death. In this review we shall discuss these clinical and biochemical findings, as well as diagnosis and treatment of affected patients in order to raise awareness about this condition
    corecore