545 research outputs found

    Long-Term Effects of Environmental Endocrine Disruptors on Reproductive Physiology and Behavior

    Get PDF
    It is well established that, over the course of development, hormones shape the vertebrate brain such that sex specific physiology and behaviors emerge. Much of this occurs in discrete developmental windows that span gestation through the prenatal period, although it is now becoming clear that at least some of this process continues through puberty. Perturbation of this developmental progression can permanently alter the capacity for reproductive success. Wildlife studies have revealed that exposure to endocrine disrupting compounds (EDCs), either naturally occurring or man made, can profoundly alter reproductive physiology and ultimately impact entire populations. Laboratory studies in rodents and other species have elucidated some of the mechanisms by which this occurs and strongly indicate that humans are also vulnerable to disruption. Use of hormonally active compounds in human medicine has also unfortunately revealed that the developing fetus can be exposed to and affected by endocrine disruptors, and that it might take decades for adverse effects to manifest. Research within the field of environmental endocrine disruption has also contributed to the general understanding of how early life experiences can alter reproductive physiology and behavior through non-genomic, epigenetic mechanisms such as DNA methylation and histone acetylation. These types of effects have the potential to impact future generations if the germ line is affected. This review provides an overview of how exposure to EDCs, particularly those that interfere with estrogen action, impacts reproductive physiology and behaviors in vertebrates

    Influence of ERβ selective agonism during the neonatal period on the sexual differentiation of the rat hypothalamic-pituitary-gonadal (HPG) axis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well established that sexual differentiation of the rodent hypothalamic-pituitary-gonadal (HPG) axis is principally orchestrated by estrogen during the perinatal period. Here we sought to better characterize the mechanistic role the beta form of the estrogen receptor (ERβ) plays in this process.</p> <p>Methods</p> <p>To achieve this, we exposed neonatal female rats to three doses (0.5, 1 and 2 mg/kg) of the ERβ selective agonist diarylpropionitrile (DPN) using estradiol benzoate (EB) as a positive control. Measures included day of vaginal opening, estrous cycle quality, GnRH and Fos co-localization following ovariectomy and hormone priming, circulating luteinizing hormone (LH) levels and quantification of hypothalamic kisspeptin immunoreactivity. A second set of females was then neonatally exposed to DPN, the ERα agonist propyl-pyrazole-triol (PPT), DPN+PPT, or EB to compare the impact of ERα and ERβ selective agonism on kisspeptin gene expression in pre- and post-pubescent females.</p> <p>Results</p> <p>All three DPN doses significantly advanced the day of vaginal opening and induced premature anestrus. GnRH and Fos co-labeling, a marker of GnRH activation, following ovariectomy and hormone priming was reduced by approximately half at all doses; the magnitude of which was not as large as with EB or what we have previously observed with the ERα agonist PPT. LH levels were also correspondingly lower, compared to control females. No impact of DPN was observed on the density of kisspeptin immunoreactive (-ir) fibers or cell bodies in the arcuate (ARC) nucleus, and kisspeptin-ir was only significantly reduced by the middle (1 mg/kg) DPN dose in the preoptic region. The second experiment revealed that EB, PPT and the combination of DPN+PPT significantly abrogated preoptic Kiss1 expression at both ages but ARC expression was only reduced by EB.</p> <p>Conclusion</p> <p>Our results indicate that selective agonism of ERβ is not sufficient to completely achieve male-typical HPG organization observed with EB or an ERα agonist.</p

    Neurotoxicity of Ortho-Phthalates: Recommendations for Critical Policy Reforms to Protect Brain Development in Children

    Get PDF
    Robust data from longitudinal birth cohort studies and experimental studies of perinatally exposed animals indicate that exposure to ortho-phthalates can impair brain development and increase risks for learning, attention, and behavioral disorders in childhood. This growing body of evidence, along with known adverse effects on male reproductive tract development, calls for immediate action. Exposures are ubiquitous; the majority of people are exposed to multiple ortho-phthalates simultaneously. We thus recommend that a class approach be used in assessing health impacts as has been done with other chemical classes. We propose critically needed policy reforms to eliminate ortho-phthalates from products that lead to exposure of pregnant women, women of reproductive age, infants, and children. Specific attention should be focused on reducing exposures among socially vulnerable populations such as communities of color, who frequently experience higher exposures. Ortho-phthalates are used in a vast array of products and elimination will thus necessitate a multipronged regulatory approach at federal and state levels. The fact that manufacturers and retailers have already voluntarily removed ortho-phthalates from a wide range of products indicates that this goal is feasible

    Bisphenol A shapes children’s brain and behavior: towards an integrated neurotoxicity assessment including human data

    Get PDF
    The authors gratefully acknowledge editorial assistance provided by Richard Davies. VM is under contract within the Human Biomonitoring for Europe Project (European Union Commission H2020-EJP-HBM4EU). The authors acknowledge the funding received from the Biomedical Research Networking Center-CIBER de Epidemiología y Salud Pública (CIBERESP), and the Instituto de Salud Carlos III (ISCIII) (FIS-PI16/01820 and FIS-PI16/01812). The funders had no role in the study design, data.Concerns about the effects of bisphenol A (BPA) on human brain and behavior are not novel; however, Grohs and colleagues have contributed groundbreaking data on this topic in a recent issue of Environmental Health. For the first time, associations were reported between prenatal BPA exposure and differences in children’s brain microstructure, which appeared to mediate the association between this exposure and children’s behavioral symptoms. Findings in numerous previous mother-child cohorts have pointed in a similar worrying direction, linking higher BPA exposure during pregnancy to more behavioral problems throughout childhood as assessed by neuropsychological questionnaires. Notwithstanding, this body of work has not been adequately considered in risk assessment. From a toxicological perspective, results are now available from the CLARITY-BPA consortium, designed to reconcile academic and regulatory toxicology findings. In fact, the brain has consistently emerged as one of the most sensitive organs disrupted by BPA, even at doses below those considered safe by regulatory agencies such as the European Food Safety Authority (EFSA). In this Commentary, we contextualize the results of Grohs et al. within the setting of previous epidemiologic and CLARITY-BPA data and express our disquiet about the “all-or-nothing” criterion adopted to select human data in a recent EFSA report on the appraisal methodology for their upcoming BPA risk assessment. We discuss the most relevant human studies, identify emerging patterns, and highlight the need for adequate assessment and interpretation of the increasing epidemiologic literature in this field in order to support decision-making. With the aim of avoiding a myopic or biased selection of a few studies in traditional risk assessment procedures, we propose a future reevaluation of BPA focused on neurotoxicity and based on a systematic and comprehensive integration of available mechanistic, animal, and human data. Taken together, the experimental and epidemiologic evidence converge in the same direction: BPA is a probable developmental neurotoxicant at low doses. Accordingly, the precautionary principle should be followed, progressively implementing stringent preventive policies worldwide, including the banning of BPA in food contact materials and thermal receipts, with a focus on the utilization of safer substitutes.European Union (EU): H2020-EJP-HBM4EUBiomedical Research Networking Center-CIBER de Epidemiologia y Salud Publica (CIBERESP)Instituto de Salud Carlos III FIS-PI16/01820 FIS-PI16/0181

    Sexual Phenotype Differences in zic2 mRNA Abundance in the Preoptic Area of a Protogynous Teleost, Thalassoma bifasciatum

    Get PDF
    The highly conserved members of the zic family of zinc-finger transcription factors are primarily known for their roles in embryonic signaling pathways and regulation of cellular proliferation and differentiation. This study describes sexual phenotype differences in abundances of zic2 mRNA in the preoptic area of the hypothalamus, a region strongly implicated in sexual behavior and function, in an adult teleost, Thalassoma bifasciatum. The bluehead wrasse (Thalassoma bifasciatum) is a valuable model for studying neuroendocrine processes because it displays two discrete male phenotypes, initial phase (IP) males and territorial, terminal phase (TP) males, and undergoes socially-controlled protogynous sex change. Previously generated microarray-based comparisons suggested that zic2 was upregulated in the brains of terminal phase males relative to initial phase males. To further explore this difference, we cloned a 727 bp sequence for neural zic2 from field-collected animals. Riboprobe-based in situ hybridization was employed to localize zic2 signal in adult bluehead brains and assess the relative abundance of brain zic2 mRNA across sexual phenotypes. We found zic2 mRNA expression was extremely abundant in the granular cells of the cerebellum and widespread in other brain regions including in the thalamus, hypothalamus, habenula, torus semicircularis, torus longitudinalis, medial longitudinal fascicle and telencephalic areas. Quantitative autoradiography and phosphorimaging showed zic2 mRNA hybridization signal in the preoptic area of the hypothalamus was significantly higher in terminal phase males relative to both initial phase males and females, and silver grain analysis confirmed this relationship between phenotypes. No significant difference in abundance was found in zic2 signal across phenotypes in the habenula, a brain region not implicated in the control of sexual behavior, or cerebellum
    corecore