621 research outputs found

    COMPARATIVE STUDY OF EFFECT OF SWERTIA CHIRATA LEAF EXTRACT ON INDINAVIR TREATED RATS

    Get PDF
    Background: Indinavir is widely used for the treatment of human immunodeficiency virus (HIV) infection. It is known to cause hyperglycemia or insulin resistance and hyperlipidemia.Aim and Objectives: To study the effect of Swertia chirata leaf extract with metformin and pioglitazone on indinavir treated rats.Methods: Swiss albino rats were divided into five Groups of six animals each. All the groups (except control) were treated with indinavir 216 mg/kg (oral) for 15 days. Group I (control) received normal saline (oral) from day 8 to day 15, Group II received indinavir 216 mg/kg (oral), Group III received S. chirata plant extract 500 mg/kg (oral) from day 8 to day 15, Group IV received pioglitazone 4 mg/kg (oral) from day 8 to day 15, and Group V received metformin 36 mg/kg (oral) from day 8 to day 15. The biochemical parameters such as serum glucose, insulin, and lipid levels were measured on day 15. Results were analyzed using one-way analysis of variance followed by Bonferroni's multiple comparison test.Results: Indinavir (216 mg/kg) treated rats showed a significant (p<0.05) increase in glucose and insulin levels and also altered lipid levels. This indicates indinavir produces diabetic-like state in rats. S. chirata extract (500 mg/kg) decreases glucose and insulin levels and also improves lipid levels the effect is almost similar to metformin and pioglitazone.Conclusion: Indinavir causes elevated glucose, insulin and lipid levels, so care must be taken while prescribing indinavir for HIV patients. Treatment with S. chirata extract improved the altered glucose, insulin, and lipid profile in indinavir treated rats.Key words: Indinavir, Insulin resistance, Diabetes dyslipidemia, Glucose intolerance

    Advantages of video trigger in problem-based learning

    Get PDF
    Background: Traditionally, paper cases are used as 'triggers' to stimulate learning in problem-based learning (PBL). However, video may be a better medium because it preserves the original language, encourages the active extraction of information, avoids depersonalization of patients and allows direct observation of clinical consultations. In short, it exposes the students to the complexity of actual clinical problems. Aim: The study aims to find out whether students and facilitators who are accustomed to paper cases would prefer video triggers or paper cases and the reasons for their preference. Method: After students and facilitators had completed a video PBL tutorial, their responses were measured by a structured questionnaire using a modified Likert scale. Results: A total of 257 students (92) and 26 facilitators (100) responded. The majority of students and facilitators considered that using video triggers could enhance the students' observational powers and clinical reasoning, help them to integrate different information and better understand the cases and motivate them to learn. They found PBL using video triggers more interesting and preferred it to PBL using paper cases. Conclusion: Video triggers are preferred by both students and facilitators over paper cases in PBL. © 2010 Informa UK Ltd All rights reserved.postprin

    Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish

    Get PDF
    The authors would like to thank the Royal Society of London, the National Eye Research Centre, the Visual Research Trust, Fight for Sight, the W.H. Ross Foundation, the Rosetrees Trust, and the Glasgow Children’s Hospital Charity for supporting this work. This work was also supported by the Deanship of Scientific Research at King Saud University for funding this research (Research Project) grant number ‘RGP – VPP – 219’.Mutations in the RPGR-interacting protein 1 (RPGRIP1) gene cause recessive Leber congenital amaurosis (LCA), juvenile retinitis pigmentosa (RP) and cone-rod dystrophy. RPGRIP1 interacts with other retinal disease-causing proteins and has been proposed to have a role in ciliary protein transport; however, its function remains elusive. Here, we describe a new zebrafish model carrying a nonsense mutation in the rpgrip1 gene. Rpgrip1homozygous mutants do not form rod outer segments and display mislocalization of rhodopsin, suggesting a role for RPGRIP1 in rhodopsin-bearing vesicle trafficking. Furthermore, Rab8, the key regulator of rhodopsin ciliary trafficking, was mislocalized in photoreceptor cells of rpgrip1 mutants. The degeneration of rod cells is early onset, followed by the death of cone cells. These phenotypes are similar to that observed in LCA and juvenile RP patients. Our data indicate RPGRIP1 is necessary for rod outer segment development through regulating ciliary protein trafficking. The rpgrip1 mutant zebrafish may provide a platform for developing therapeutic treatments for RP patients.Publisher PDFPeer reviewe

    Dissemination of Strongyloides stercoralis in a patient with systemic lupus erythematosus after initiation of albendazole: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p><it>Strongyloides stercoralis </it>infection affects hundreds of millions of people worldwide. As immigration rates and international travel increase, so does the number of cases of strongyloidiasis in the United States. Although described both in immigrant and in immunosuppressed populations, hyperinfection and dissemination of <it>S. stercoralis </it>following the initiation of antiparasitic medication is a previously unreported phenomenon.</p> <p>Case presentation</p> <p>Here we describe the case of a 38-year-old immunocompromised woman with systemic lupus erythematosus, who developed disseminated disease following treatment with albendazole (400 mg every 12 hours). Notably the patient was receiving oral prednisone (10 mg once daily), azathioprine (50 mg twice daily), and hydroxychloroquine (400 mg daily) at the time of hospitalization. The patient was subsequently treated successfully with ivermectin (200 mcg/kg daily).</p> <p>Conclusion</p> <p>The reader should be aware that dissemination of <it>S. stercoralis </it>can occur even after the initiation of antiparasitic medication.</p

    A model-based approach to selection of tag SNPs

    Get PDF
    BACKGROUND: Single Nucleotide Polymorphisms (SNPs) are the most common type of polymorphisms found in the human genome. Effective genetic association studies require the identification of sets of tag SNPs that capture as much haplotype information as possible. Tag SNP selection is analogous to the problem of data compression in information theory. According to Shannon's framework, the optimal tag set maximizes the entropy of the tag SNPs subject to constraints on the number of SNPs. This approach requires an appropriate probabilistic model. Compared to simple measures of Linkage Disequilibrium (LD), a good model of haplotype sequences can more accurately account for LD structure. It also provides a machinery for the prediction of tagged SNPs and thereby to assess the performances of tag sets through their ability to predict larger SNP sets. RESULTS: Here, we compute the description code-lengths of SNP data for an array of models and we develop tag SNP selection methods based on these models and the strategy of entropy maximization. Using data sets from the HapMap and ENCODE projects, we show that the hidden Markov model introduced by Li and Stephens outperforms the other models in several aspects: description code-length of SNP data, information content of tag sets, and prediction of tagged SNPs. This is the first use of this model in the context of tag SNP selection. CONCLUSION: Our study provides strong evidence that the tag sets selected by our best method, based on Li and Stephens model, outperform those chosen by several existing methods. The results also suggest that information content evaluated with a good model is more sensitive for assessing the quality of a tagging set than the correct prediction rate of tagged SNPs. Besides, we show that haplotype phase uncertainty has an almost negligible impact on the ability of good tag sets to predict tagged SNPs. This justifies the selection of tag SNPs on the basis of haplotype informativeness, although genotyping studies do not directly assess haplotypes. A software that implements our approach is available

    Novel Aptamer-Nanoparticle Bioconjugates Enhances Delivery of Anticancer Drug to MUC1-Positive Cancer Cells In Vitro

    Get PDF
    MUC1 protein is an attractive target for anticancer drug delivery owing to its overexpression in most adenocarcinomas. In this study, a reported MUC1 protein aptamer is exploited as the targeting agent of a nanoparticle-based drug delivery system. Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid) (PLGA) nanoparticles were formulated by an emulsion/evaporation method, and MUC1 aptamers (Apt) were conjugated to the particle surface through a DNA spacer. The aptamer conjugated nanoparticles (Apt-NPs) are about 225.3 nm in size with a stable in vitro drug release profile. Using MCF-7 breast cancer cell as a MUC1-overexpressing model, the MUC1 aptamer increased the uptake of nanoparticles into the target cells as measured by flow cytometry. Moreover, the PTX loaded Apt-NPs enhanced in vitro drug delivery and cytotoxicity to MUC1+ cancer cells, as compared with non-targeted nanoparticles that lack the MUC1 aptamer (P<0.01). The behavior of this novel aptamer-nanoparticle bioconjugates suggests that MUC1 aptamers may have application potential in targeted drug delivery towards MUC1-overexpressing tumors

    Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques

    Get PDF
    The use of computational models in metabolic engineering has been increasing as more genome-scale metabolic models and computational approaches become available. Various computational approaches have been developed to predict how genetic perturbations affect metabolic behavior at a systems level, and have been successfully used to engineer microbial strains with improved primary or secondary metabolite production. However, identification of metabolic engineering strategies involving a large number of perturbations is currently limited by computational resources due to the size of genome-scale models and the combinatorial nature of the problem. In this study, we present (i) two new bi-level strain design approaches using mixed-integer programming (MIP), and (ii) general solution techniques that improve the performance of MIP-based bi-level approaches. The first approach (SimOptStrain) simultaneously considers gene deletion and non-native reaction addition, while the second approach (BiMOMA) uses minimization of metabolic adjustment to predict knockout behavior in a MIP-based bi-level problem for the first time. Our general MIP solution techniques significantly reduced the CPU times needed to find optimal strategies when applied to an existing strain design approach (OptORF) (e.g., from ∼10 days to ∼5 minutes for metabolic engineering strategies with 4 gene deletions), and identified strategies for producing compounds where previous studies could not (e.g., malate and serine). Additionally, we found novel strategies using SimOptStrain with higher predicted production levels (for succinate and glycerol) than could have been found using an existing approach that considers network additions and deletions in sequential steps rather than simultaneously. Finally, using BiMOMA we found novel strategies involving large numbers of modifications (for pyruvate and glutamate), which sequential search and genetic algorithms were unable to find. The approaches and solution techniques developed here will facilitate the strain design process and extend the scope of its application to metabolic engineering
    corecore