5,860 research outputs found

    Two phase detonation studies

    Get PDF
    An experimental study of the passage of a shock wave over a burning fuel drop is described. This includes high speed framing photographs of the interaction taken at 500,000 frames per second. A theoretical prediction of the ignition of a fuel drop by a shock wave is presented and the results compared with earlier experimental work. Experimental attempts to generate a detonation in a liquid fuel drop (kerosene)-liquid oxidizer drop (hydrogen peroxide)-inert gas-environment are described. An appendix is included which gives the analytical prediction of power requirements for the drop generator to produce certain size drops at a certain mass rate. A bibliography is also included which lists all of the publications resulting from this research grant

    DETERMINATION OF BRADYCARDIA & TACHYCARDIA FROM ECG SIGNAL USING WAVELET TRANSFORM

    Get PDF
    The Automatic ECG signal analysis by wavelet transform (WT) along with MATLAB using signal processing and wavelet toolboxes to ease the process to calculate the set on points, and set off points, and time intervals within QRS complexes, T waves and P waves. This process will allow the analyses on the characteristics of each QRS complexes, T waves and P waves. This can be done by using Wavelet filter Coefficients, for this procedure following steps are used for filtration:- R-R interval detection QRS Complex Detection T wave and P wave detectio

    The Cosmology of Massless String Modes

    Full text link
    We consider the spacetime dynamics of a gas of closed strings in the context of General Relativity in a background of arbitrary spatial dimensions. Our motivation is primarily late time String Gas Cosmology, where such a spacetime picture has to emerge after the dilaton has stabilized. We find that after accounting for the thermodynamics of a gas of strings, only string modes which are massless at the self-dual radius are relevant, and that they lead to a dynamics which is qualitatively different from that induced by the modes usually considered in the literature. In the context of an ansatz with three large spatial dimensions and an arbitrary number of small extra dimensions, we obtain isotropic stabilization of these extra dimensions at the self-dual radius. This stabilization occurs for fixed dilaton, and is induced by the special string states we focus on. The three large dimensions undergo a regular Friedmann-Robertson-Walker expansion. We also show that this framework for late-time cosmology is consistent with observational bounds.Comment: 15 pages, no figures, references added (again

    Perturbations in a Bouncing Brane Model

    Full text link
    The question of how perturbations evolve through a bounce in the Cyclic and Ekpyrotic models of the Universe is still a matter of ongoing debate. In this report we show that the collision between boundary branes is in most cases singular even in the full 5-D formalism, and that first order perturbation theory breaks down for at least one perturbation variable. Only in the case that the boundary branes approach each other with constant velocity shortly before the bounce, can a consistent, non singular solution be found. It is then possible to follow the perturbations explicitly until the actual collision. In this case, we find that if a scale invariant spectrum developed on the hidden brane, it will get transferred to the visible brane during the bounce.Comment: 15 pages, minor modifications, a few typos correcte

    Effect of Doping on Formation of Solid State Battery in Lithium Vanadate

    Get PDF

    Wall influence on dynamics of a microbubble

    Full text link
    The nonlinear dynamic behaviour of microscopic bubbles near a wall is investigated. The Keller-Miksis-Parlitz equation is adopted, but modified to account for the presence of the wall. This base model describes the time evolution of the bubble surface, which is assumed to remain spherical, and accounts for the effect of acoustic radiation losses owing to liquid compressibility in the momentum conservation. Two situations are considered: the base case of an isolated bubble in an unbounded medium; and a bubble near a solid wall. In the latter case, the wall influence is modeled by including a symmetrically oscillating image bubble. The bubble dynamics is traced using a numerical solution of the model equation. Subsequently, Floquet theory is used to accurately detect the bifurcation point where bubble oscillations stop following the driving ultrasound frequency and undergo period-changing bifurcations. Of particular interest is the detection of the subcritical period tripling and quadrupling transition. The parametric bifurcation maps are obtained as functions of non-dimensional parameters representing the bubble radius, the frequency and pressure amplitude of the driving ultrasound field and the distance from the wall. It is shown that the presence of the wall generally stabilises the bubble dynamics, so that much larger values of the pressure amplitude are needed to generate nonlinear responses.Comment: 25 pages, 14 figure

    On the Transfer of Metric Fluctuations when Extra Dimensions Bounce or Stabilize

    Full text link
    In this report, we study within the context of general relativity with one extra dimension compactified either on a circle or an orbifold, how radion fluctuations interact with metric fluctuations in the three non-compact directions. The background is non-singular and can either describe an extra dimension on its way to stabilization, or immediately before and after a series of non-singular bounces. We find that the metric fluctuations transfer undisturbed through the bounces or through the transients of the pre-stabilization epoch. Our background is obtained by considering the effects of a gas of massless string modes in the context of a consistent 'massless background' (or low energy effective theory) limit of string theory. We discuss applications to various approaches to early universe cosmology, including the ekpyrotic/cyclic universe scenario and string gas cosmology.Comment: V2. Minor Clarifications V3. appendix and 2 figures added, typos corrected, conclusions unchanged 12 pages, 6 figure

    String Gas Cosmology and Structure Formation

    Get PDF
    It has recently been shown that a Hagedorn phase of string gas cosmology may provide a causal mechanism for generating a nearly scale-invariant spectrum of scalar metric fluctuations, without the need for an intervening period of de Sitter expansion. A distinctive signature of this structure formation scenario would be a slight blue tilt of the spectrum of gravitational waves. In this paper we give more details of the computations leading to these results.Comment: 12 pages, 3 figure
    corecore