26 research outputs found
Regiochemical control in the addition of aryl N-sulphinylamines to juglone and juglone derivatives
961-96
Associations between the gut microbiome and metabolome in early life
Background: The infant intestinal microbiome plays an important role in metabolism and immune development with impacts on lifelong health. The linkage between the taxonomic composition of the microbiome and its metabolic phenotype is undefined and complicated by redundancies in the taxon-function relationship within microbial communities. To inform a more mechanistic understanding of the relationship between the microbiome and health, we performed an integrative statistical and machine learning-based analysis of microbe taxonomic structure and metabolic function in order to characterize the taxa-function relationship in early life. Results: Stool samples collected from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) at approximately 6-weeks (n = 158) and 12-months (n = 282) of age were profiled using targeted and untargeted nuclear magnetic resonance (NMR) spectroscopy as well as DNA sequencing of the V4-V5 hypervariable region from the bacterial 16S rRNA gene. There was significant inter-omic concordance based on Procrustes analysis (6 weeks: p = 0.056; 12 months: p = 0.001), however this association was no longer significant when accounting for phylogenetic relationships using generalized UniFrac distance metric (6 weeks: p = 0.376; 12 months: p = 0.069). Sparse canonical correlation analysis showed significant correlation, as well as identifying sets of microbe/metabolites driving microbiome-metabolome relatedness. Performance of machine learning models varied across different metabolites, with support vector machines (radial basis function kernel) being the consistently top ranked model. However, predictive R2 values demonstrated poor predictive performance across all models assessed (avg: â 5.06% -- 6 weeks; â 3.7% -- 12 months). Conversely, the Spearman correlation metric was higher (avg: 0.344â6 weeks; 0.265â12 months). This demonstrated that taxonomic relative abundance was not predictive of metabolite concentrations. Conclusions: Our results suggest a degree of overall association between taxonomic profiles and metabolite concentrations. However, lack of predictive capacity for stool metabolic signatures reflects, in part, the possible role of functional redundancy in defining the taxa-function relationship in early life as well as the bidirectional nature of the microbiome-metabolome association. Our results provide evidence in favor of a multi-omic approach for microbiome studies, especially those focused on health outcomes
NMR and MetabolomicsâA Roadmap for the Future
Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatographymass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021âthe most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements
A Metabolomics Approach to Investigate Kukoamine BâA Potent Natural Product With Anti-diabetic Properties
Due to the surge in type 2 diabetes mellitus (T2DM), treatments for chronic metabolic dysregulations with fewer side-effects are sought. Lycii Cortex (LyC), a traditional Chinese Medicine (TCM) herb has a long history of being widely prescribed to treat T2DM as alternative medicine; however, the bioactive molecules and working mechanism remained unknown. Previous studies revealed kukoamine B (KB) as a major and featured compound for LyC with bioactivities for anti-oxidation and acute inflammation, which may be related to anti-diabetes properties. This study aims to understand the efficacy and the mode of action of KB in the diabetic (db/db) mouse model using a metabolomics approach. Parallel comparison was conducted using the first-line anti-diabetic drugs, metformin and rosligtazone, as positive controls. The db/db mice were treated with KB (50 mg kgâ1 dayâ1) for 9 weeks. Bodyweight and fasting blood glucose were monitored every 5 and 7 days, respectively. Metabolomics and high-throughput molecular approaches, including lipidomics, targeted metabolomics (Biocrates p180), and cytokine profiling were applied to measure the alteration of serum metabolites and inflammatory biomarkers between different treatments vs. control (db/db mice treated with vehicle). After 9 weeks of treatment, KB lowered blood glucose, without the adverse effects of bodyweight gain and hepatomegaly shown after rosiglitazone treatment. Lipidomics analysis revealed that KB reduced levels of circulating triglycerides, cholesterol, phosphatidylethanolamine, and increased levels of phosphatidylcholines. KB also increased acylcarnitines, and reduced systemic inflammation (cytokine array). Pathway analysis suggested that KB may regulate nuclear transcription factors (e.g., NF-ÎșB and/or PPAR) to reduce inflammation and facilitate a shift toward metabolic and inflammatory homeostasis. Comparison of KB with first-line drugs suggests that rosiglitazone may over-regulate lipid metabolism and anti-inflammatory responses, which may be associated with adverse side effects, while metformin had less impact on lipid and anti-inflammation profiles. Our research from holistic and systemic views supports the conclusion that KB is the bioactive compound of LyC for managing T2DM, and suggests KB as a nutraceutical or a pharmaceutical candidate for T2D treatment. In addition, our research provides insights related to metformin and rosiglitazone action, beyond lowering blood glucose
NMR and MetabolomicsâA Roadmap for the Future
Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021âthe most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements
Competitive [3+2] and [4+2] cycloaddition reactions of 2-furaldehyde phenylhydrazone with alkenes
Maleimides react with 2-furaldehyde phenylhydrazone 1 at the furan ring to give 4-(phenylhydrazono)methyl-1H-isoindole-1,3(2H)-diones when equimolar mixtures are refluxed in benzene for shorter reaction times. Excess maleimides and longer reaction times give mixtures of 4- (phenylhydrazono)methyl-1H-isoindole-1,3(2H)-diones and 3-(1,3-dihydro-1,3- dioxo-4-isoindolyl)-1,6a-dihydropyrrolo[3,4-c]pyrazolo-4,6(3aH,5H)-diones resulting from [4 + 2] and [3 + 2] double-cycloaddition. Reactions of 1 with dimethyl acetylene dicarboxylate give the double-cycloaddition product dimethyl-3[4-hydroxy-2,3-bis(methoxycarbonyl)phenyl]-1-phenylpyrazole-4,5- dicarboxylate. Methyl acrylate and acrylonitrile gives only the [3 + 2] cycloaddition products, 3-(2-furyl)-1-phenyl-4,5-dihydropyrazole-4-carboxylic methyl ester and 3-(2-furyl)-1-phenyl-4,5-dihydropyrazole-4-carbonitrile, respectively
A novel reaction of aryl N-sulphinylamines, addition to 1,4-naphthoquinone.
Aryl N-sulphinylamines react with 1,4-naphthoquinone to give 2-arylsulphimoyl-1,4-naphthoquinones. © 1993
Stable Isotope-Resolved Metabolomic Differences between Hormone-Responsive and Triple-Negative Breast Cancer Cell Lines
Purpose. To conduct an exploratory study to identify mechanisms that differentiate Luminal A (BT474 and MCF-7) and triple-negative (MDA-MB-231 and MDA-MB-468) breast cancer (BCa) cell lines to potentially provide novel therapeutic targets based on differences in energy utilization. Methods. Cells were cultured in media containing either [U-13C]-glucose or [U-13C]-glutamine for 48 hours. Conditioned media and cellular extracts were analyzed by 1H and 13C NMR spectroscopy. Results. MCF-7 cells consumed the most glucose, producing the most lactate, demonstrating the greatest Warburg effect-associated energy utilization. BT474 cells had the highest tricarboxylic acid cycle (TCA) activity. The majority of energy utilization patterns in MCF-7 cells were more similar to MDA-MB-468 cells, while the patterns for BT474 cells were more similar to MDA-MB-231 cells. Compared to the Luminal A cell lines, TNBC cell lines consumed more glutamine and less glucose. BT474 and MDA-MB-468 cells produced high amounts of 13C-glycine from media [U-13C]-glucose which was integrated into glutathione, indicating de novo synthesis. Conclusions. Stable isotopic resolved metabolomics using 13C substrates provided mechanistic information about energy utilization that was difficult to interpret using 1H data alone. Overall, cell lines that have different hormone receptor status have different energy utilization requirements, even if they are classified by the same clinical BCa subtype; and these differences offer clues about optimizing treatment strategies
Bridging the Gap between Analytical and Microbial Sciences in Microbiome Research
ABSTRACT Metabolites from the microbiome influence human, animal, and environmental health, but the diversity and functional roles of these compounds have only begun to be elucidated. Comprehensively characterizing these molecules are significant challenges, as it requires expertise in analytical methods, such as mass spectrometry and nuclear magnetic resonance spectroscopy, skills that not many traditional microbiologists or microbial ecologists possess. This creates a gap between microbiome scientists that want to understand the role of microbial metabolites in microbiome systems and the skills required to generate and interpret complex metabolomics data sets. To bridge this gap, microbiome scientists should engage analytical chemists to best understand the underlying chemical principles of the data. Conversely, analytical scientists are encouraged to engage with microbiome scientists to better understand the biological questions being asked with metabolomics and to best communicate its intricacies. Better communication across the chemistry/biology disciplines will further reveal the âdark matterâ within microbiomes that maintain healthy humans and environments