7 research outputs found

    Parity-induced decrease in systemic growth hormone alters mammary gland signaling: A potential role in pregnancy protection from breast cancer

    Get PDF
    Early full-term pregnancy is an effective natural protection against breast cancer in both humans and experimental rodents. The protective effect of an early pregnancy is in part linked to changes in circulating hormones that are involved in both normal breast development and breast cancer. For example, a reduction in circulating growth hormone (GH) has been shown to protect rats from carcinogen-induced mammary tumors. We examined the ability of a full-term pregnancy to alter the endocrine GH/IGF-I axis and how this change affected normal mammary gland function in two commonly used rat models (Sprague-Dawley and Wistar-Furth). Circulating GH and IGF-I were measured in blood drawn every 30 minutes from parous and aged-matched virgin (AMV) female rats. Mean serum GH levels were significantly decreased (

    Recurrent Fusion Genes in Gastric Cancer: CLDN18-ARHGAP26 Induces Loss of Epithelial Integrity.

    Get PDF
    Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET) whole-genome sequencing, we analyzed 15 gastric cancers (GCs) from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT). Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H(+) leakage, and the fusion might contribute to invasiveness once a cell is transformed. Cell Rep 2015 Jul 14; 12(2):272-285

    Parity-Induced Decrease in Systemic Growth Hormone Alters Mammary Gland Signaling: A Potential Role in Pregnancy Protection from Breast Cancer

    No full text
    Early full-term pregnancy is an effective natural protection against breast cancer in both humans and experimental rodents. The protective effect of an early pregnancy is in part linked to changes in circulating hormones that are involved in both normal breast development and breast cancer. For example, a reduction in circulating growth hormone (GH) has been shown to protect rats from carcinogen-induced mammary tumors. We examined the ability of a full-term pregnancy to alter the endocrine GH/IGF-I axis and how this change affected normal mammary gland function in two commonly used rat models (Sprague-Dawley and Wistar-Furth). Circulating GH and IGF-I were measured in blood drawn every 30 minutes from parous and aged-matched virgin (AMV) female rats. Mean serum GH levels were significantly decreased (p<0.01) in parous compared to AMV in both rat strains. Changes in GH levels were independent of estrous cycle, indicated by a significant (p<0.05) reduction in circulating levels of GH during estrus and diestrus in both parous strains. Despite the decrease in circulating GH, pituitary GH mRNA levels were unaltered in parous rats. Circulating IGF-I and hepatic IGF-I mRNA were also unaltered by parity in either rat strain. Immunoblot analysis of mammary glands showed decreases in phosphorylation of Stat5A and Jak2, suggesting reduced action of GH in the mammary gland. Therefore, while the parity reduction in circulating GH doesn’t impact upon circulating IGF-I levels, it is possible that reduced GH action directly at the mammary gland and may play a role in pregnancy protection from breast cancer

    An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia

    No full text
    Targeted therapies against the BCR-ABL1 kinase have revolutionized treatment of chronic phase (CP) chronic myeloid leukemia (CML). In contrast, management of blast crisis (BC) CML remains challenging because BC cells acquire complex molecular alterations that confer stemness features to progenitor populations and resistance to BCR-ABL1 tyrosine kinase inhibitors. Comprehensive models of BC transformation have proved elusive because of the rarity and genetic heterogeneity of BC, but are important for developing biomarkers predicting BC progression and effective therapies. To better understand BC, we performed an integrated multiomics analysis of 74 CP and BC samples using wholegenome and exome sequencing, transcriptome and methylome profiling, and chromatin immunoprecipitation followed by high-throughput sequencing. Employing pathway-based analysis, we found the BC genome was significantly enriched for mutations affecting components of the polycomb repressive complex (PRC) pathway. While transcriptomically, BC progenitors were enriched and depleted for PRC1- and PRC2-related gene sets respectively. By integrating our data sets, we determined that BC progenitors undergo PRCdriven epigenetic reprogramming toward a convergent transcriptomic state. Specifically, PRC2 directs BC DNA hypermethylation, which in turn silences key genes involved in myeloid differentiation and tumor suppressor function via so-called epigenetic switching, whereas PRC1 represses an overlapping and distinct set of genes, including novel BC tumor suppressors. On the basis of these observations, we developed an integrated model of BC that facilitated the identification of combinatorial therapies capable of reversing BC reprogramming (decitabine1PRC1 inhibitors), novel PRC-silenced tumor suppressor genes (NR4A2), and gene expression signatures predictive of disease progression and drug resistance in CP
    corecore