411 research outputs found

    Experimental characterisation of rate-dependent compression behaviour of fibre reinforced composites

    Get PDF
    Fibre reinforced polymers (FRP) materials are being increasingly used for aerospace and automotive structural applications. One of the critical loading conditions for such applications is impact, consequently, understanding of the composite behavior under such loads becomes critical for structural design. The analysis and design process for achieving impact-resistant composite structures requires rate-dependent constitutive models, which, in turn, requires material properties of the composite over a range of strain rates. It is, therefore, the objective of the research to investigate the strain rate-dependent behavior of fiber reinforced composites under compressive loads for a wide range of fiber orientations. Quasi-static (≈ 1e-3 s-1) and high loading (≈ 200 s-1) rates are considered for the experimental study. Accordingly, two different test setups are utilized, a screw-driven universal testing machine for quasi-static tests and a Split Hopkinson Pressure Bar (SHPB) system for dynamic tests. The stress-strain response of the composite is reported for the different fiber orientations and the strain rates, revealing the rate-dependent characteristics of the carbon fiber reinforced composite. From the test results, it is observed that, the dependency of the fracture strength on the loading rate is significant. The results are summarised in terms of the failure envelope in the transverse compression-in-plane shear σ22-σ12 plane for the two strain rates

    A Wedge-DCB Test Methodology to Characterise High Rate Mode-I Interlaminar Fracture Properties of Fibre Composites

    Get PDF
    A combined numerical-experimental methodology is presented to measure dynamic Mode-I fracture properties of fiber reinforced composites. A modified wedge-DCB test using a Split-Hopkinson Bar technique along with cohesive zone modelling is utilised for this purpose. Three different comparison metrics, namely, strain-displacement response, crack propagation history and crack opening history are employed in order to extract unique values for the cohesive fracture properties of the delaminating interface. More importantly, the complexity of dealing with the frictional effects between the wedge and the DCB specimen is effectively circumvented by utilising right acquisition techniques combined with an inverse numerical modelling procedure. The proposed methodology is applied to extract the high rate interlaminar fracture properties of carbon fiber reinforced epoxy composites and it is further shown that a high level of confidence in the calibrated data can be established by adopting the proposed methodology

    On the Rate-dependent Plasticity Modelling of Unidirectional Fibre-reinforced Polymeric Matrix Composites

    Get PDF
    Three different approaches to plasticity are investigated to model the experimentally-observed non-linear behaviour of unidirectional fibre-reinforced polymeric matrix materials. The first and simplest approach consists on assuming independent one-dimensional rate-dependent plasticity on in-plane (12) and through-thickness longitudinal (13) shear components of the Cauchy stress tensor. The second, employs a 3D extension of the plane stress Hill'48 anisotropic plastic surface. The third and the last is formulated as a quadratic yield function inspired by Puck's fracture initiation criterion. It searches for a plastic localisation plane in which a certain combination of normal and shear stresses is maximum. Numerical simulations are conducted to analyse the off-axis compression behaviour of carbon fibre reinforced epoxy composite under varying loading rates. The afore-mentioned three different approaches are explored with an aim to predict the experimentally-observed non-linear response of such composites. The model parameters are determined using a deterministic inverse modelling strategy employing an iterative domain reduction optimisation technique. As far as the experiments are concerned, the quasi-static and medium rate tests were carried out in universal testing machines, while the experiments at high rate were conducted in a Split Hopkinson Pressure Bar system. The effectiveness in terms of accuracy and robustness of the three approaches are discussed

    Gastrointestinal Dysfunction Criteria in Critically Ill Children: The PODIUM Consensus Conference

    Full text link
    CONTEXT Prior criteria to define pediatric multiple organ dysfunction syndrome (MODS) did not include gastrointestinal dysfunction. OBJECTIVES Our objective was to evaluate current evidence and to develop consensus criteria for gastrointestinal dysfunction in critically ill children. DATA SOURCES Electronic searches of PubMed and EMBASE were conducted from January 1992 to January 2020, using medical subject heading terms and text words to define gastrointestinal dysfunction, pediatric critical illness, and outcomes. STUDY SELECTION Studies were included if they evaluated critically ill children with gastrointestinal dysfunction, performance characteristics of assessment/scoring tools to screen for gastrointestinal dysfunction, and assessed outcomes related to mortality, functional status, organ-specific outcomes, or other patient-centered outcomes. Studies of adults or premature infants, animal studies, reviews/commentaries, case series with sample size ≤10, and non-English language studies with inability to determine eligibility criteria were excluded. DATA EXTRACTION Data were abstracted from each eligible study into a standard data extraction form along with risk of bias assessment by a task force member. RESULTS The systematic review supports the following criteria for severe gastrointestinal dysfunction: 1a) bowel perforation, 1b) pneumatosis intestinalis, or 1c) bowel ischemia, present on plain abdominal radiograph, computed tomography (CT) scan, magnetic resonance imaging (MRI), or gross surgical inspection, or 2) rectal sloughing of gut mucosa. LIMITATIONS The validity of the consensus criteria for gastrointestinal dysfunction are limited by the quantity and quality of current evidence. CONCLUSIONS Understanding the role of gastrointestinal dysfunction in the pathophysiology and outcomes of MODS is important in pediatric critical illness

    Characterizations of the diurnal shapes of OI 630.0 nm dayglow intensity variations: inferences

    No full text
    International audienceMeasurements of OI 630.0 nm thermospheric dayglow emission by means of the Dayglow Photometer (DGP) at Mt. Abu (24.6° N, 73.7° E, dip lat 19.09° N), a station under the crest of Equatorial Ionization Anomaly (EIA), reveal day-to-day changes in the shapes of the diurnal profiles of dayglow intensity variations. These shapes have been characterized using the magnetometer data from equatorial and low-latitude stations. Substantial changes have been noticed in the shapes of the dayglow intensity variations between 10:00?15:00 IST (Indian Standard Time) during the days when normal and counter electrojet events are present over the equator. It is found that the width (the time span corresponding to 0.8 times the maximum dayglow intensity) of the diurnal profile has a linear relationship with the integrated electrojet strength. Occasional deviation from this linear relationship is attributed to the presence of substantial mean meridional wind

    Clinicians' perspectives on supporting individuals with severe anorexia nervosa in specialist eating disorder intensive treatment settings

    Get PDF
    BACKGROUND: Admissions to intensive treatment (i.e., inpatient [IP] and/or day patient [DP]) for individuals with severe anorexia nervosa (AN) are common. Growing literature indicates potential risks and benefits of each intensive treatment approach; however, existing research has focused on patient and carer perspectives of these treatments. Also, there is scant empirical evidence available for guiding the parameters of intensive treatments for AN. We therefore explored clinicians' perspectives and experience of supporting adults with severe AN in intensive settings. METHODS: We conducted twenty one semi-structured interviews with clinicians who deliver intensive treatments (i.e., IP and/or DP) for individuals with severe AN across four specialist Eating Disorder Services in the United Kingdom between May 2020 and June 2021. We asked clinicians about their views and experiences of supporting individuals with severe AN in intensive treatment settings and the challenges and opportunities associated with IP and DP treatment. Data were analysed using reflexive thematic analysis supported by NVivo software. RESULTS: Five broad and interrelated themes were identified: (1) Intensive Support; (2) The Severity of Patients' Illnesses; (3) Hope and Recovery; (4) Which Treatment When; (5) Limited Resources; and (6) Carer Burden. We identified various similarities between the two intensive treatment approaches, including the value of intensive and multidisciplinary support and carer involvement, and the challenge of managing complex and unique needs in resource-limited intensive settings. We also found differences in the relationship of treatment to patients' home environments, the necessity of patient motivation, and the management of risk. CONCLUSIONS: Both intensive treatment settings are valued by clinicians; however, there are unique challenges and opportunities for supporting individuals with severe AN within each. Our findings suggest DP treatment may be used as an alternative to IP treatment for individuals with severe AN. However, clear questions remain over which intensive treatment setting is best suited to which patient when and should be the focus of future research
    • …
    corecore