9,682 research outputs found
Semileptonic decay of meson into states in a QCD potential model
The slope and curvature of Isgur Wise function for meson is computed
in a QCD potential model in two different approaches of choosing the
perturbative term of the Cornell potential. Based on heavy quark effective
theory the exclusive semileptonic decay rates of meson into the $c\bar c\
(\eta_c,J/\psi)c\bar cB_{c}$ is small due to its heavy mass.Comment: 13 pages, 4 tables, 4 figures,Accepted to Int.J.Mod.Phys.
A new study on the emission of EM waves from large EAS
A method used in locating the core of individual cosmic ray showers is described. Using a microprocessor-based detecting system, the density distribution and hence, energy of each detected shower was estimated
Microprocessor-based single particle calibration of scintillation counter
A microprocessor-base set-up is fabricated and tested for the single particle calibration of the plastic scintillator. The single particle response of the scintillator is digitized by an A/D converter, and a 8085 A based microprocessor stores the pulse heights. The digitized information is printed. Facilities for CRT display and cassette storing and recalling are also made available
Quantum random walk of two photons in separable and entangled state
We discuss quantum random walk of two photons using linear optical elements.
We analyze the quantum random walk using photons in a variety of quantum states
including entangled states. We find that for photons initially in separable
Fock states, the final state is entangled. For polarization entangled photons
produced by type II downconverter, we calculate the joint probability of
detecting two photons at a given site. We show the remarkable dependence of the
two photon detection probability on the quantum nature of the state. In order
to understand the quantum random walk, we present exact analytical results for
small number of steps like five. We present in details numerical results for a
number of cases and supplement the numerical results with asymptotic analytical
results
Probabilistic Combination of Noisy Points and Planes for RGB-D Odometry
This work proposes a visual odometry method that combines points and plane
primitives, extracted from a noisy depth camera. Depth measurement uncertainty
is modelled and propagated through the extraction of geometric primitives to
the frame-to-frame motion estimation, where pose is optimized by weighting the
residuals of 3D point and planes matches, according to their uncertainties.
Results on an RGB-D dataset show that the combination of points and planes,
through the proposed method, is able to perform well in poorly textured
environments, where point-based odometry is bound to fail.Comment: Accepted to TAROS 201
- …