544 research outputs found

    Geometry of Non-Hausdorff Spaces and Its Significance for Physics

    Full text link
    Hausdorff relation, topologically identifying points in a given space, belongs to elementary tools of modern mathematics. We show that if subtle enough mathematical methods are used to analyze this relation, the conclusions may be far-reaching and illuminating. Examples of situations in which the Hausdorff relation is of the total type, i.e., when it identifies all points of the considered space, are the space of Penrose tilings and space-times of some cosmological models with strong curvature singularities. With every Hausdorff relation a groupoid can be associated, and a convolutive algebra defined on it allows one to analyze the space that otherwise would remain intractable. The regular representation of this algebra in a bundle of Hilbert spaces leads to a von Neumann algebra of random operators. In this way, a probabilistic description (in a generalized sense) naturally takes over when the concept of point looses its meaning. In this situation counterparts of the position and momentum operators can be defined, and they satisfy a commutation relation which, in the suitable limiting case, reproduces the Heisenberg indeterminacy relation. It should be emphasized that this is neither an additional assumption nor an effect of a quantization process, but simply the consequence of a purely geometric analysis.Comment: 13 LaTex pages, no figure

    Multidecadal changes in coastal benthic species composition and ecosystem functioning occur independently of temperature-driven community shifts

    Get PDF
    Funding: The authors sincerely appreciate the support and contributions of two European Horizon Projects: ‘Ecological Tipping Cascades in the Arctic Seas’ (ECOTIP), Grant No 869383 and ‘Advancing understanding of Cumulative Impacts on European marine biodiversity, ecosystem functions and services for human wellbeing’ (ACTNOW), Grant No 101060072.Rising global temperatures are often identified as the key driver impacting ecosystems and the services they provide by affecting biodiversity structure and function. A disproportionate amount of our understanding of biodiversity and function is from short-term experimental studies and static values of biodiversity indices, lacking the ability to monitor long-term trends and capture community dynamics. Here, we analyse a biennial dataset spanning 32 years of macroinvertebrate benthic communities and their functional response to increasing temperatures. We monitored changes in species' thermal affinities to examine warming-related shifts by selecting their mid-point global temperature distribution range and linking them to species' traits. We employed a novel weighted metric using Biological Trait Analysis (BTA) to gain better insights into the ecological potential of each species by incorporating species abundance and body size and selecting a subset of traits that represent five ecosystem functions: bioturbation activity, sediment stability, nutrient recycling and higher and lower trophic production. Using biodiversity indices (richness, Simpson's diversity and vulnerability) and functional indices (richness, Rao's Q and redundancy), the community structure showed no significant change over time with a narrow range of variation. However, we show shifts in species composition with warming and increases in the abundance of individuals, which altered ecosystem functioning positively and/or non-linearly. Yet, when higher taxonomic groupings than species were excluded from the analysis, there was only a weak increase in the measured change in community-weighted average thermal affinities, suggesting changes in ecosystem functions over time occur independently of temperature increase-related shifts in community composition. Other environmental factors driving species composition and abundance may be more important in these subtidal macrobenthic communities. This challenges the prevailing emphasis on temperature as the primary driver of ecological response to climate change and emphasises the necessity for a comprehensive understanding of the temporal dynamics of complex systems.Peer reviewe

    Transcription factor Creb3l1 maintains proteostasis in neuroendocrine cells

    Get PDF
    OBJECTIVES: Dynamic changes to neuropeptide hormone synthesis and secretion by hypothalamic neuroendocrine cells is essential to ensure metabolic homeostasis. The specialised molecular mechanisms that allow neuroendocrine cells to synthesise and secrete vast quantities of neuropeptides remain ill defined. The objective of this study was to identify novel genes and pathways controlled by transcription factor and endoplasmic reticulum stress sensor Creb3l1 which is robustly activated in hypothalamic magnocellular neurones in response to increased demand for protein synthesis. METHODS: We adopted a multiomic strategy to investigate specific roles of Creb3l1 in rat magnocellular neurones. We first performed chromatin immunoprecipitation followed by genome sequencing (ChIP-seq) to identify Creb3l1 genomic targets and then integrated this data with RNA sequencing data from physiologically stimulated and Creb3l1 knockdown magnocellular neurones. RESULTS: The data converged on Creb3l1 targets that code for ribosomal proteins and endoplasmic reticulum proteins crucial for the maintenance of cellular proteostasis. We validated genes that compose the PERK arm of the unfolded protein response pathway including Eif2ak3, Eif2s1, Atf4 and Ddit3 as direct Creb3l1 targets. Importantly, knockdown of Creb3l1 in the hypothalamus led to a dramatic depletion in neuropeptide synthesis and secretion. The physiological outcomes from studies of paraventricular and supraoptic nuclei Creb3l1 knockdown animals were changes to food and water consumption. CONCLUSION: Collectively, our data identify Creb3l1 as a comprehensive controller of the PERK signalling pathway in magnocellular neurones in response to physiological stimulation. The broad regulation of neuropeptide synthesis and secretion by Creb3l1 presents a new therapeutic strategy for metabolic diseases

    The subgingival plaque microbiome, systemic antibodies against bacteria and citrullinated proteins following periodontal therapy

    Get PDF
    Periodontitis (PD) shows an association with rheumatoid arthritis (RA) and systemic inflammation. Periodontal pathogens, namely Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, are proposed to be capable of inducing citrullination of peptides in the gingiva, inducing the formation of anti-citrullinated protein antibodies (ACPAs) within susceptible hosts. Here, we sought to investigate whether periodontal treatment influenced systemic inflammation and antibody titres to P. gingivalis, A. actinomycetemcomitans, Prevotella intermedia and ACPA in 42 systemically health patients with periodontal disease. Subgingival plaque and serum samples were collected from study participants before (baseline) and 90 days after treatment to analyse the abundance of specific bacteria and evaluate anti-bacterial antibodies, C-reactive protein (CRP), tumour necrosis factor α (TNF-α), interleukin 6 (IL-6) and ACPA in serum. Following treatment, all patients showed reduced periodontal inflammation. Despite observing a weak positive correlation between CRP and IL-6 with periodontal inflammation at baseline, we observed no significant reductions in any indicators of systemic inflammation 90 days after treatment. In contrast, anti-P. gingivalis IgG significantly reduced post-treatment (p < 0.001, Wilcoxon signed rank test), although no changes were observed for other antibody titres. Patients who had detectable P. gingivalis in subgingival plaques had significantly higher anti-P. gingivalis IgG and ACPA titres, suggesting a potential association between P. gingivalis colonisation and systemic antibody titres

    Long-term impacts of invasive species on a native top predator in a large lake system

    Get PDF
    1. Declining abundances of forage fish and the introduction and establishment of non-indigenous species have the potential to substantially alter resource and habitat exploitation by top predators in large lakes. 2. We measured stable isotopes of carbon (δ13C) and nitrogen (δ15N) in field-collected and archived samples of Lake Ontario lake trout (Salvelinus namaycush) and five species of prey fish and compared current trophic relationships of this top predator with historical samples. 3. Relationships between δ15N and lake trout age were temporally consistent throughout Lake Ontario and confirmed the role of lake trout as a top predator in this food web. However, δ13C values for age classes of lake trout collected in 2008 ranged from 1.0 to 3.9‰ higher than those reported for the population sampled in 1992. 4. Isotope mixing models predicted that these changes in resource assimilation were owing to the replacement of rainbow smelt (Osmerus mordax) by round goby (Neogobius melanostomus) in lake trout diet and increased reliance on carbon resources derived from nearshore production. This contrasts with the historical situation in Lake Ontario where δ13C values of the lake trout population were dominated by a reliance on offshore carbon production. 5. These results indicate a reduced capacity of the Lake Ontario offshore food web to support the energetic requirements of lake trout and that this top predator has become increasingly reliant on prey resources that are derived from nearshore carbon pathways

    The jellification of north temperate lakes.

    Get PDF
    Calcium (Ca) concentrations are decreasing in softwater lakes across eastern North America and western Europe. Using long-term contemporary and palaeo-environmental field data, we show that this is precipitating a dramatic change in Canadian lakes: the replacement of previously dominant pelagic herbivores (Ca-rich Daphnia species) by Holopedium glacialis, a jelly-clad, Ca-poor competitor. In some lakes, this transformation is being facilitated by increases in macro-invertebrate predation, both from native (Chaoborus spp.) and introduced (Bythotrephes longimanus) zooplanktivores, to which Holopedium, with its jelly coat, is relatively invulnerable. Greater representation by Holopedium within cladoceran zooplankton communities will reduce nutrient transfer through food webs, given their lower phosphorus content relative to daphniids, and greater absolute abundances may pose long-term problems to water users. The dominance of jelly-clad zooplankton will likely persist while lakewater Ca levels remain low.This work was primarily supported by grants from the Natural Sciences and Engineering Research Council of Canada and funding from the Ontario Ministry of the Environment.This is the accepted manuscript. The final version is available at http://rspb.royalsocietypublishing.org/content/282/1798/20142449

    Analysis of antibiotic resistance genes in multidrug-resistant acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center

    Get PDF
    Military medical facilities treating patients injured in Iraq and Afghanistan have identified a large number of multidrug-resistant (MDR) Acinetobacter baumannii isolates. In order to anticipate the impact of these pathogens on patient care, we analyzed the antibiotic resistance genes responsible for the MDR phenotype in Acinetobacter sp. isolates collected from patients at the Walter Reed Army Medical Center (WRAMC). Susceptibility testing, PCR amplification of the genetic determinants of resistance, and clonality were determined. Seventy-five unique patient isolates were included in this study: 53% were from bloodstream infections, 89% were resistant to at least three classes of antibiotics, and 15% were resistant to all nine antibiotics tested. Thirty-seven percent of the isolates were recovered from patients nosocomially infected or colonized at the WRAMC. Sixteen unique resistance genes or gene families and four mobile genetic elements were detected. In addition, this is the first report of blaOXA-58-like and blaPER-like genes in the U.S. MDR A. baumannii isolates with at least eight identified resistance determinants were recovered from 49 of the 75 patients. Molecular typing revealed multiple clones, with eight major clonal types being nosocomially acquired and with more than 60% of the isolates being related to three pan-European types. This report gives a “snapshot” of the complex genetic background responsible for antimicrobial resistance in Acinetobacter spp. from the WRAMC. Identifying genes associated with the MDR phenotype and defining patterns of transmission serve as a starting point for devising strategies to limit the clinical impact of these serious infections. © 2006, American Society for Microbiolog

    Can biodiversity of preexisting and created salt marshes match across scales? An assessment from microbes to predators

    Get PDF
    Coastal wetlands are rapidly disappearing worldwide due to a variety of processes, including climate change and flood control. The rate of loss in the Mississippi River Delta is among the highest in the world and billions of dollars have been allocated to build and restore coastal wetlands. A key question guiding assessment is whether created coastal salt marshes have similar biodiversity to preexisting, reference marshes. However, the numerous biodiversity metrics used to make these determinations are typically scale dependent and often conflicting. Here, we applied ecological theory to compare the diversity of different assemblages (surface and below-surface soil microbes, plants, macroinfauna, spiders, and on-marsh and off-marsh nekton) between two created marshes (4–6 years old) and four reference marshes. We also quantified the scale-dependent effects of species abundance distribution, aggregation, and density on richness differences and explored differences in species composition. Total, between-sample, and within-sample diversity (γ, β, and α, respectively) were not consistently lower at created marshes. Richness decomposition varied greatly among assemblages and marshes (e.g., soil microbes showed high equitability and α diversity, but plant diversity was restricted to a few dominant species with high aggregation). However, species abundance distribution, aggregation, and density patterns were not directly associated with differences between created and reference marshes. One exception was considerably lower density for macroinfauna at one of the created marshes, which was drier because of being at a higher elevation and having coarser substrate compared with the other marshes. The community compositions of created marshes were more dissimilar than reference marshes for microbe and macroinfauna assemblages. However, differences were small, particularly for microbes. Together, our results suggest generally similar taxonomic diversity and composition between created and reference marshes. This provides support for the creation of marsh habitat as tools for the maintenance and restoration of coastal biodiversity. However, caution is needed when creating marshes because specific building and restoration plans may lead to different colonization patterns
    corecore