50 research outputs found

    Genetic differentiation among host-associated Alebra leafhoppers (Hemiptera: Cicadellidae)

    Get PDF
    The limited importance ascribed to sympatric speciation pro cesses via host race formation is partially due to the few cases of host races that have been reported among host populations. This work sheds light on the taxonomy of Alebra leafhoppers and examines the possible existence of host races among host-associated populations. The species of this genus show varying degrees of host association with deciduous trees and shrubs and, frequently, host popu lations of uncertain taxonomic status coexist and occasion ally become pests. Allozyme electrophoresis of 21 Greek populations including sympatric, local and geographically distant samples collected on 13 different plant species, show that they represent at least five species: A. albostriella Falle´n, A. viridis (Rey) (sensu Gillham), A. wahlbergi Bo Keywords: host races; leafhoppers; sympatric speciation; sibling species; allozymes; Alebra Introduction Sympatric speciation is a controversial subject in evol utionary biology (see Mayr, 1963; Futuyma and Mayer, 1980; Paterson, 1981; Via, 2001). One of the reasons for this controversy is that sympatric speciation seems to be an extremely rare phenomenon occurring only in very few groups of taxa, represented chiefly by phytophagous insects (Tauber and Tauber, 1977; Menken, 1981; Wood, 1993; Emelianov et al, 1995; Via, 1999; Finchak et al, 2000; Craig et al, 2001). The limited number of reported cases among organisms with sexual reproduction can be at least partially attributed to the fact that taxa undergoing sympatric speciation events must fulfill very restrictive biological and ecological requirements. Most sympatric speciation models demand that there is intraspecific genetic variation in traits that differentially affect the fitness of individuals that colonise new habitats or hosts (Dieckman and Doebeli, 1999; Hawthorne and Via, 2001 but see Higashi et al, 1999 and Takimoto et al, 2000). They assume that selection acting on these traits can prevent genetic exchange between populations (Bush, 1975; Tauber and Tauber, 1977; Diehl and Bush, 1989). In phytophagous insects, this means that host pref erences must be genetically determined and mating should occur on the host (Bush, 1975; Diehl and Bush, Correspondence: D Aguin-Pombo, Department of Biology, University of Madeira, Campus Universitario da Penteada, 9000 Funchal, Madeira, Portugal. E-mail: aguin uma.pt Received 12 December 2000; accepted 13 December 2001 heman and two new species. Of these, one is associated to Quercus frainetto and other is specific to Crataegus spp. Significant genetic differences among sympatric and local host populations were found only in A. albostriella, between populations on Turkey oak, beech and common alder. It is suggested that the last two of these host populations may represent different host races. The results show that both the host plant and geographical distance affect the patterns of differentiation in the genus. The formation of some spec ies seems to have been the result of allopatric speciation events while, for others, their origin can be equally explained either by sympatric or allopatric speciation.info:eu-repo/semantics/publishedVersio

    Two approaches to the study of the origin of life.

    Get PDF
    This paper compares two approaches that attempt to explain the origin of life, or biogenesis. The more established approach is one based on chemical principles, whereas a new, yet not widely known approach begins from a physical perspective. According to the first approach, life would have begun with - often organic - compounds. After having developed to a certain level of complexity and mutual dependence within a non-compartmentalised organic soup, they would have assembled into a functioning cell. In contrast, the second, physical type of approach has life developing within tiny compartments from the beginning. It emphasises the importance of redox reactions between inorganic elements and compounds found on two sides of a compartmental boundary. Without this boundary, ¿life¿ would not have begun, nor have been maintained; this boundary - and the complex cell membrane that evolved from it - forms the essence of life

    Chrysomya chloropyga (Wiedemann, 1818) and C-putoria (Wiedemann, 1830) (Diptera : Calliphoridae) are two different species

    No full text
    The blowflies Chrysomya chloropyga (Wiedemann,1818) and Chrysomya putoria (Wiedemann, 1830) (Diptera: Calliphoridae) of veterinary and medical importance are taxonomically revised and formally reestablished as two different species. Characters in the adult morphology by which they can be distinguished, including characters in the genitalia, are described. The form with a darkened anterior margin of the wing, 'f. tacniata Bigot' sensu Zumpt 1956, is treated as a variant of C. putoria. In order to preserve stability of nomenclature, lectotypes are designated for both nominal species, fixing their identity in accordance with current usage. Somomyia cuprinitens Rondani, 1873, and Somomyia taeniata Bigot, 1877, (= C. chloropyga 'f. taeniata Bigot' of Zumpt) are considered new synonyms of C. putoria

    Mate recognition in the South African citrus thrips Scirtothrips aurantii (Faure) and cross-mating tests with populations from Australia and South Africa

    No full text
    South African citrus thrips (Scirtothrips aurantii) is a pest of citrus, mango and other horticultural species in its native range, which encompasses a large part of Africa. Its adventitious establishment in Australia in 2002 was a major cause for concern. The thrips, 11 years after its incursion into Australia, has remained on plants of a single host plant genus Bryophyllum (Crassulaceae). Characterization of the Specific-Mate Recognition System of the Bryophyllum population of thrips present in Australia and behavioral bioassay experiments revealed that compounds found in the insects' body extracts play a crucial role in mate recognition of S. aurantii. Reciprocal cross-mating experiments between the Australian Bryophyllum insects and South African S. aurantii from horticultural host plants showed that mating frequencies were significantly lower in test crosses (Bryophyllum x horticultural) than in controls (Bryophyllum x Bryophyllum or horticultural x horticultural), which indicates there are at least two distinct species within S. aurantii and suggests further tests of this interpretation. The results suggest that these tiny phytophagous insects localize mates through their association with a particular host plant species (or closely-related group of species). Also, specific tests are suggested for clarifying the species status of the host-associated populations of S. aurantii in Africa

    Invasive Phytophagous Pests Arising Through a Recent Tropical Evolutionary Radiation: The Bactrocera Dorsalis Complex of Fruit Flies

    Get PDF
    The Bactrocera dorsalis complex of tropical fruit flies (Diptera: Tephritidae: Dacinae) contains 75 described species, largely endemic to South-east Asia. Within the complex are a small number of polyphagous pests of international significance, including B. dorsalis s.s., B. papayae, B. carambolae and B. philippinensis. The majority of species within the complex were first described in 1994 and since then substantial research has been undertaken in developing morphological and molecular diagnostic techniques for their recognition. Such techniques can now resolve most taxa adequately. Genetic evidence suggests that the complex has evolved in only the last few million years and development of a phylogeny of the group is considered a high priority to provide a framework for future evolutionary and ecological studies. As model systems, mating studies on B. dorsalis s.s. and B. cacuminata have substantially advanced our understanding of insect use of plant-derived chemicals for mating, but such studies have not been applied to help resolve the limits of biological species within the complex. Although commonly regarded as major pests, we note that there is very little published evidence documenting economic losses caused by flies of the B. dorsalis complex. Quantification of economic losses caused by B. dorsalis complex species is urgently needed to prioritise research for quarantine and management. Although documented invaders, relatively little work has been done on the invasion biology of the complex and this is a further area warranting wor
    corecore