24 research outputs found

    Costruzione e sperimentazione di una turbina cross-flow per acquedotti

    Get PDF
    La memoria descrive una nuova micro turbina idraulica con capacità di regolazione della portata, per installazioni in piccoli corsi d’acqua, su acquedotti esistenti o a valle di impianti di depurazione delle acque. Viene inoltre descritta l’installazione del prototipo della turbina nella rete idropotabile di un comune siciliano

    Using Information in Task Models to Support Design of Interactive Safety-Critical Applications

    No full text
    The use of models has entered into current practice when developing various types of software product. However, there is a lack of methods able to use the information contained in relevant models concerning human-computer interaction for supporting the design and development of user interfaces. In this paper, we propose a method for using information contained in formally represented task models in order to support the design of interactive applications, with particular attention to those applications where both usability and safety are the main concern. Examples taken from our experience in a case study from the domain of Air Traffic Control are introduced and further discussed to explain how the method can be applied. Keywords Model-based design of user interfaces, task models, interactive safety-critical applications. 1

    Quasi-mosaicity of (311) planes in silicon and its use in a Laue lens with high-focusing power

    No full text
    (311) curved planes can be exploited for efficiently focus hard X-rays. With this purpose, a self-standing bent crystal was manufactured at the Sensor and Semiconductor Laboratory of Ferrara (Italy). The crystal was designed as an optical component for a X-ray concentrator such as a Laue lens. The curvature of (311) planes was obtained through the quasi-mosaic effect. The diffraction efficiency of the sample was tested at the Institut Laue Langevin of Grenoble (France) by using a collimated monochromatic X-ray beam. This was the first prove of the diffraction properties of (311) quasi-mosaic planes. Diffraction efficiency resulted 35% with a 182 keV X-ray beam, in agreement with the theoretical expectation. It corresponded to a reflectivity of 33%. While the chosen orientation is not the most performing lying of planes, it can be used, in addition to smaller-index planes, in order to raise the total effective area of a Laue lens. To quantify it, a Laue lens based on quasi-mosaic silicon and germanium crystals, exploiting (111), (422) and (311) diffracting planes, was achieved and simulated with the LaueGen code

    Origin of quasi-mosaic effect for symmetric skew planes in a silicon or germanium plate

    No full text
    Bent silicon and germanium crystals are used for several modern physics applications, above all for focusing of hard X-rays and for steering of charged particle beams by means of channeling and related coherent phenomena. In particular, anisotropic deformations are effectively exploited for these applications. A typical anisotropic deformation that is used is the quasi-mosaic (QM) curvature. It involves the bending of crystallographic planes that would be otherwise flat in the case of an isotropic medium. Here, the curvature the 110 planes was obtained through the quasi-mosaic effect in the symmetric configuration for the first time. This achievement is important because the 110 family of planes is highly efficient for both the applications mentioned above. Until now, the curvature of 110 planes in the QM configuration has not been used because it vanishes if the direction of the planes is aligned with the applied moment that bends the crystal plate. Indeed, to obtain the curvature of this particular family of crystallographic planes, the ?110? direction has not to be aligned with respect to the imparted moment that bends the plate, i.e. the 110 planes have to be skew planes. Experimental verification of the quasi-mosaic curvature for the 110 planes was provided through hard X-ray diffraction at beamline ID15A of the European Synchrotron Radiation Facility in Grenoble, France, showing good agreement with the theoretical expectation

    Thick self-standing bent crystals as optical elements for a Laue lens for applications in astrophysics

    No full text
    In this paper we report progresses in the realization of self-standing bent crystals, which are suitable as optical elements for Laue lenses, i.e. for optic to focus hard X-rays in the 100–1000 keV energy range. The curvature of the crystals is a key factor to enhance diffraction efficiency and energy bandpass for such an optic. In particular, two bent crystals featuring a thickness of 5 mm, made of Si and Ge respectively, were produced at the Sensor and Semiconductor Laboratory in Ferrara, Italy. The crystals were bent through the application of a carbon fibre composite. This proved to be a relatively low cost method for crystal bending, suitable for mass production. The manufactured samples were characterised via optical interferometry, and showed a fairly uniform curvature. Finally, the samples were tested exploiting hard X-ray diffraction at the ID11 facility of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. A careful analysis of the experimental data highlighted that the samples feature large energy bandpass, wide geometrical acceptance for incoming hard X-rays, and high diffraction efficiency. We therefore conclude that such self-standing crystals are good candidates as Laue lens components for astrophysics applications

    Is Health-Related Quality of Life Associated with Upper and Lower Airway Inflammation in Asthmatics?

    Get PDF
    Background. Allergic diseases impair health-related quality of life (HR-QoL). However, the relationship between airway inflammation and HR-QoL in patients with asthma and rhinitis has not been fully investigated. We explored whether the inflammation of upper and lower airways is associated with HR-QoL. Methods. Twenty-two mild allergic asthmatics with concomitant rhinitis (10 males, 38 ± 17 years) were recruited. The Rhinasthma was used to identify HR-QoL, and the Asthma Control Test (ACT) was used to assess asthma control. Subjects underwent lung function and exhaled nitric oxide (eNO) test, collection of exhaled breath condensate (EBC), and nasal wash. Results. The Rhinasthma Global Summary score (GS) was 25 ± 11. No relationships were found between GS and markers of nasal allergic inflammation (% eosinophils: , ; ECP: , ) or bronchial inflammation (pH of the EBC: , ; bronchial NO: , ; alveolar NO: , ). The mean ACT score was 18. When subjects were divided into controlled (ACT ≥ 20) and uncontrolled (ACT < 20), the alveolar NO significantly correlated with GS in uncontrolled asthmatics (, ). Conclusions. Upper and lower airways inflammation appears unrelated to HR-QoL associated with respiratory symptoms. These preliminary findings suggest that, in uncontrolled asthma, peripheral airway inflammation could be responsible for impaired HR-QoL

    Manufacturing of advanced bent crystals for Laue Optics for Gamma ObservationS (LOGOS)

    No full text
    X- and c-ray detection is currently a hot topic for a wide scientific community, spanning from astrophysics to nuclear medicine. However, lack of optics capable of focusing photons of energies in the energy range 0.1–1 MeV leaves the photon detection to a direct-view approach, resulting in a limited efficiency and resolution. The main scope of the INFN-LOGOS project is the development of technologies that enable manufacturing highly performing optical elements to be employed in the realization of hard X-ray lenses. Such lenses, typically named Laue lenses, consist of an ensemble of crystals disposed in concentric rings in order to diffract the incident radiation towards the focus of the lens, where a detector is placed. In particular, the INFN-LOGOS project aims at the realization of intrinsically bent silicon and germanium crystals exploiting the quasi-mosaic effect for focusing hard X-rays. Crystal manufacturing relies on a proper revisitation of techniques typically employed in silicon micromachining, such as thin film deposition and patterning or ion implantation
    corecore