1,018 research outputs found

    Using Description Logics for RDF Constraint Checking and Closed-World Recognition

    Full text link
    RDF and Description Logics work in an open-world setting where absence of information is not information about absence. Nevertheless, Description Logic axioms can be interpreted in a closed-world setting and in this setting they can be used for both constraint checking and closed-world recognition against information sources. When the information sources are expressed in well-behaved RDF or RDFS (i.e., RDF graphs interpreted in the RDF or RDFS semantics) this constraint checking and closed-world recognition is simple to describe. Further this constraint checking can be implemented as SPARQL querying and thus effectively performed.Comment: Extended version of a paper of the same name that will appear in AAAI-201

    A New General Method to Generate Random Modal Formulae for Testing Decision Procedures

    Get PDF
    The recent emergence of heavily-optimized modal decision procedures has highlighted the key role of empirical testing in this domain. Unfortunately, the introduction of extensive empirical tests for modal logics is recent, and so far none of the proposed test generators is very satisfactory. To cope with this fact, we present a new random generation method that provides benefits over previous methods for generating empirical tests. It fixes and much generalizes one of the best-known methods, the random CNF_[]m test, allowing for generating a much wider variety of problems, covering in principle the whole input space. Our new method produces much more suitable test sets for the current generation of modal decision procedures. We analyze the features of the new method by means of an extensive collection of empirical tests

    Unification in the Description Logic EL

    Full text link
    The Description Logic EL has recently drawn considerable attention since, on the one hand, important inference problems such as the subsumption problem are polynomial. On the other hand, EL is used to define large biomedical ontologies. Unification in Description Logics has been proposed as a novel inference service that can, for example, be used to detect redundancies in ontologies. The main result of this paper is that unification in EL is decidable. More precisely, EL-unification is NP-complete, and thus has the same complexity as EL-matching. We also show that, w.r.t. the unification type, EL is less well-behaved: it is of type zero, which in particular implies that there are unification problems that have no finite complete set of unifiers.Comment: 31page

    Formal representation of complex SNOMED CT expressions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Definitory expressions about clinical procedures, findings and diseases constitute a major benefit of a formally founded clinical reference terminology which is ontologically sound and suited for formal reasoning. SNOMED CT claims to support formal reasoning by description-logic based concept definitions.</p> <p>Methods</p> <p>On the basis of formal ontology criteria we analyze complex SNOMED CT concepts, such as "Concussion of Brain with(out) Loss of Consciousness", using alternatively full first order logics and the description logic <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1472-6947-8-S1-S9-i1"><m:semantics><m:mrow><m:mi>ā„°</m:mi><m:mi>ā„’</m:mi></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8hmHuKae8NeHWeaaa@37B1@</m:annotation></m:semantics></m:math></inline-formula>.</p> <p>Results</p> <p>Typical complex SNOMED CT concepts, including negations or not, can be expressed in full first-order logics. Negations cannot be properly expressed in the description logic <inline-formula><m:math xmlns:m="http://www.w3.org/1998/Math/MathML" name="1472-6947-8-S1-S9-i1"><m:semantics><m:mrow><m:mi>ā„°</m:mi><m:mi>ā„’</m:mi></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8hmHuKae8NeHWeaaa@37B1@</m:annotation></m:semantics></m:math></inline-formula> underlying SNOMED CT. All concepts concepts the meaning of which implies a temporal scope may be subject to diverging interpretations, which are often unclear in SNOMED CT as their contextual determinants are not made explicit.</p> <p>Conclusion</p> <p>The description of complex medical occurrents is ambiguous, as the same situations can be described as (i) a complex occurrent <it>C </it>that has <it>A </it>and <it>B </it>as temporal parts, (ii) a simple occurrent <it>A' </it>defined as a kind of A followed by some <it>B</it>, or (iii) a simple occurrent <it>B' </it>defined as a kind of <it>B </it>preceded by some <it>A</it>. As negative statements in SNOMED CT cannot be exactly represented without a (computationally costly) extension of the set of logical constructors, a solution can be the reification of negative statments (e.g., "Period with no Loss of Consciousness"), or the use of the SNOMED CT context model. However, the interpretation of SNOMED CT context model concepts as description logics axioms is not recommended, because this may entail unintended models.</p

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table

    Reduced prefrontal gyrification in obsessiveā€“compulsive disorder

    Get PDF
    Structural magnetic resonance imaging (MRI) studies reveal evidence for brain abnormalities in obsessiveā€“compulsive disorder (OCD), for instance, reduction of gray matter volume in the prefrontal cortex. Disturbances of gyrification in the prefrontal cortex have been described several times in schizophrenia pointing to a neurodevelopmental etiology, while gyrification has not been studied so far in OCD patients. In 26 OCD patients and 38 healthy control subjects MR-imaging was performed. Prefrontal cortical folding (gyrification) was measured bilaterally by an automated version of the automated-gyrification index (A-GI), a ratio reflecting the extent of folding, from the slice containing the inner genu of the corpus callosum up to the frontal pole. Analysis of covariance (ANCOVA, independent factor diagnosis, covariates age, duration of education) demonstrated that compared with control subjects, patients with OCD displayed a significantly reduced A-GI in the left hemisphere (pĀ =Ā 0.021) and a trend for a decreased A-GI in the right hemisphere (pĀ =Ā 0.076). Significant correlations between prefrontal lobe volume and A-GI were only observed in controls, but not in OCD patients. In conclusion, prefrontal hypogyrification in OCD patients may be a structural correlate of the impairment in executive function of this patient group and may point to a neurodevelopmental origin of this disease
    • ā€¦
    corecore