44,701 research outputs found

    Investigating microstructural variation in the human hippocampus using non-negative matrix factorization

    No full text
    In this work we use non-negative matrix factorization to identify patterns of microstructural variance in the human hippocampus. We utilize high-resolution structural and diffusion magnetic resonance imaging data from the Human Connectome Project to query hippocampus microstructure on a multivariate, voxelwise basis. Application of non-negative matrix factorization identifies spatial components (clusters of voxels sharing similar covariance patterns), as well as subject weightings (individual variance across hippocampus microstructure). By assessing the stability of spatial components as well as the accuracy of factorization, we identified 4 distinct microstructural components. Furthermore, we quantified the benefit of using multiple microstructural metrics by demonstrating that using three microstructural metrics (T1-weighted/T2-weighted signal, mean diffusivity and fractional anisotropy) produced more stable spatial components than when assessing metrics individually. Finally, we related individual subject weightings to demographic and behavioural measures using a partial least squares analysis. Through this approach we identified interpretable relationships between hippocampus microstructure and demographic and behavioural measures. Taken together, our work suggests non-negative matrix factorization as a spatially specific analytical approach for neuroimaging studies and advocates for the use of multiple metrics for data-driven component analyses

    Experimental Investigation of Gully Formation Under Low Pressure and Low Temperature Conditions

    Get PDF
    International audienceIntroduction: A large morphological diversity of gullies is observed on Earth and on Mars. Debris flow – a non-newtonian flow comprising a sediment-water mix – is a common process attributed to gully formation on both planets [1, 2]. Many variables can influence the morphology of debris flows (grainsizes, discharge , slope, soil moisture, etc) and their respective influences are difficult to disentangle in the field. Furthermore effects specific to the martian environment have not yet been explored in detail. Some preliminary laboratory simulations have already been performed that isolate some of these variables. Cold room experiments [3] were already perfomed to test the effect of a melted surface layer on the formation of linear gullies over sand dunes. Low pressure experiments [4] were performed to test the effect of the atmospheric pressure on erosional capacity and runout distance of the flows. Our aim is to develop a new set of experiments both under Martian atmospheric pressure and terrestrial atmospheric pressure in order to reproduce the variability of the observed morphologies under well constrained experimental conditions

    Improving the Isotretinoin Photostability by Incorporating in Microemulsion Matrix

    Get PDF
    The present paper demonstrates the increased photostability of isotretinoin when loaded in microemulsion. The photodegradation of isotretinoin, in methanol and microemulsion formulation was studied under direct sun light. The photodegradation process was monitored by UV spectrophotometry. In methanol solution, isotretinoin undergoes complete photodegradation just within a few minutes of light exposure. Isotretinoin incorporated in microemulsion formulation showed an increased stability in comparison to the methanol solutions. In particular for isotretinoin, a residual concentration of 75% was still present after a light irradiance versus a residual value of just 16% measured at the same time in methanol solution. Further, degradation kinetic parameters of isotretinoin-loaded microemulsion formulation were demonstrated increase isotretinoin half-life about five-times in comparison with a methanol solution under a direct sun light

    Improving dialysis adherence for high risk patients using automated messaging: Proof of concept

    Get PDF
    AbstractComorbidities and socioeconomic barriers often limit patient adherence and self-management with hemodialysis. Missed sessions, often associated with communication barriers, can result in emergency dialysis and avoidable hospitalizations. This proof of concept study explored using a novel digital-messaging platform, EpxDialysis, to improve patient-to-dialysis center communication via widely available text messaging and telephone technology. A randomized controlled trial was conducted through Washington University-affiliated hemodialysis centers involving ESRD patients with poor attendance, defined as missing 2–6 sessions over the preceding 12 weeks. A cross-over study design evaluated appointment adherence between intervention and control groups. Comparing nonadherence rates eight weeks prior to enrollment, median appointment adherence after using the system increased by 75%, and median number of unintended hospitalization days fell by 31%. A conservative cost-benefit analysis of EpxDialysis demonstrates a 1:36 savings ratio from appointment adherence. EpxDialysis is a low-risk, cost-effective, intervention for increasing hemodialysis adherence in high-risk patients, especially at centers caring for vulnerable and low-income patients.</jats:p

    Large variations in the hole spin splitting of quantum-wire subband edges

    Full text link
    We study Zeeman splitting of zone-center subband edges in a cylindrical hole wire subject to a magnetic field parallel to its axis. The g-factor turns out to fluctuate strongly as a function of wire-subband index, assuming values that differ substantially from those found in higher-dimensional systems. We analyze the spin properties of hole-wire states using invariants of the spin-3/2 density matrix and find a strong correlation between g-factor value and the profile of hole-spin polarization density. Our results suggest possibilities for confinement engineering of hole spin splittings.Comment: 4 pages, 3 figures, RevTex4, to appear in PR

    Study of outcomes of suprapatellar approach for tibia intramedullary nailing in patients coming to rural medical college, Loni

    Get PDF
    Background: Tibia shaft fractures are most common lower limb long bone fractures. In approximately 80% of patients, tibia fracture occurs in diaphysis region. The procedure of intramedullary interlocking nailing is done by positioning the injured extremity at minimum of 90 degree of flexion in the knee joint to achieve optimal exposure of correct entry point. The tension of quadriceps tendon causes a typical apex anterior angulation of proximal fragment. Supra patellar nailing is done with knee in semi extended position, reducing the anterior angulation. The aim of this study is to study outcomes of supra patellar access of intramedullary nailing for tibia fractures.Methods: It is a descriptive longitudinal study which was carried out from October 2019 to September 2021 in Dr. Balasaheb Vikhe Patil rural medical college, Loni, Ahmednagar. In this study 60 case of closed shaft tibia fractures were treated by supra-patellar nailing technique.Results: In our study we selected, 60 patients with tibia fracture admitting in our institute. All patients underwent operative procedure in the form of intramedullary interlocking tibia nail which was done with suprapatellar approach. Out of all the 60 patients treated with suprapatellar approach, excellent results with good range of movements with excellent lower extremity functional scale score.Conclusions: Supra-patellar approach was found to provide excellent outcome for proximal 1/3rd of tibia fracture
    corecore