7,557 research outputs found

    Prospective evaluation of BDProbeTec strand displacement amplification (SDA) system for diagnosis of tuberculosis in non-respiratory and respiratory samples.

    Get PDF
    Nucleic acid amplification techniques (NAATs) have been demonstrated to make significant improvements in the diagnosis of tuberculosis (TB), particularly in the time to diagnosis and the diagnosis of smear-negative TB. The BD ProbeTec strand displacement amplification (SDA) system for the diagnosis of pulmonary and non-pulmonary tuberculosis was evaluated. A total of 689 samples were analysed from patients with clinically suspected TB. Compared with culture, the sensitivity and specificity for pulmonary samples were 98 and 89 %, and against final clinical diagnosis 93 and 92 %, respectively. This assay has undergone limited evaluation for non-respiratory samples and so 331 non-respiratory samples were tested, identifying those specimens that were likely to yield a useful result. These were CSF (n = 104), fine needle aspirates (n = 64) and pus (n = 41). Pleural fluid (n = 47) was identified as a poor specimen. A concern in using the SDA assay was that low-positive samples were difficult to interpret; 7.8 % of specimens fell into this category. Indeed, 64 % of the discrepant results, when compared to final clinical diagnosis, could be assigned as low-positive samples. Specimen type did not predict likelihood of a sample being in the low-positive zone. Although the manufacturers do not describe the concept of a low-positive zone, we have found that it aids clinical diagnosis

    Aetiological role of viral and bacterial infections in acute adult lower respiratory tract infection (LRTI) in primary care.

    Get PDF
    BACKGROUND: Lower respiratory tract infections (LRTI) are a common reason for consulting general practitioners (GPs). In most cases the aetiology is unknown, yet most result in an antibiotic prescription. The aetiology of LRTI was investigated in a prospective controlled study. METHODS: Eighty adults presenting to GPs with acute LRTI were recruited together with 49 controls over 12 months. Throat swabs, nasal aspirates (patients and controls), and sputum (patients) were obtained and polymerase chain reaction (PCR) and reverse transcriptase polymerase chain reaction (RT-PCR) assays were used to detect Streptococcus pneumoniae, Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila, influenza viruses (AH1, AH3 and B), parainfluenza viruses 1-3, coronaviruses, respiratory syncytial virus, adenoviruses, rhinoviruses, and enteroviruses. Standard sputum bacteriology was also performed. Outcome was recorded at a follow up visit. RESULTS: Potential pathogens were identified in 55 patients with LRTI (69%) and seven controls (14%; p<0.0001). The identification rate was 63% (viruses) and 26% (bacteria) for patients and 12% (p<0.0001) and 6% (p = 0.013), respectively, for controls. The most common organisms identified in the patients were rhinoviruses (33%), influenza viruses (24%), and Streptococcus pneumoniae (19%) compared with 2% (p<0.001), 6% (p = 0.013), and 4% (p = 0.034), respectively, in controls. Multiple pathogens were identified in 18 of the 80 LRTI patients (22.5%) and in two of the 49 controls (4%; p = 0.011). Atypical organisms were rarely identified. Cases with bacterial aetiology were clinically indistinguishable from those with viral aetiology. CONCLUSION: Patients presenting to GPs with acute adult LRTI predominantly have a viral illness which is most commonly caused by rhinoviruses and influenza viruses

    Radiographic viewing conditions at Johannesburg Hospital

    Get PDF
    Purpose: To measure the luminance level of X-ray viewing boxes and ambient lighting levels in reporting rooms as a quality assurance procedure, and to compare the results with those recommended by the Directorate of Radiatio

    Proof of concept: A bioinformatic and serological screening method for identifying new peptide antigens for Chlamydia trachomatis related sequelae in women

    Get PDF
    This study aimed to identify new peptide antigens from Chlamydia (C.) trachomatis in a proof of concept approach which could be used to develop an epitope-based serological diagnostic for C. trachomatis related infertility in women. A bioinformatics analysis was conducted examining several immunodominant proteins from C. trachomatis to identify predicted immunoglobulin epitopes unique to C. trachomatis. A peptide array of these epitopes was screened against participant sera. The participants (all female) were categorized into the following cohorts based on their infection and gynecological history; acute (single treated infection with C. trachomatis), multiple (more than one C. trachomatis infection, all treated), sequelae (PID or tubal infertility with a history of C. trachomatis infection), and infertile (no history of C. trachomatis infection and no detected tubal damage). The bioinformatics strategy identified several promising epitopes. Participants who reacted positively in the peptide 11 ELISA were found to have an increased likelihood of being in the sequelae cohort compared to the infertile cohort with an odds ratio of 16.3 (95% c.i. 1.65-160), with 95% specificity and 46% sensitivity (0.19-0.74). The peptide 11 ELISA has the potential to be further developed as a screening tool for use during the early IVF work up and provides proof of concept that there may be further peptide antigens which could be identified using bioinformatics and screening approaches. © 2013 The Authors

    Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria

    Get PDF
    In recent years, multidrug-resistant (MDR) bacteria have increased rapidly, representing a major threat to human health. This problem has created an urgent need to identify alternatives for the treatment of MDR bacteria. The aim of this study was to identify the antibacterial activity of selenium nanoparticles (SeNPs) and selenium nanowires (SeNWs) against MDR bacteria and assess the potential synergistic effects when combined with a conventional antibiotic (linezolid). SeNPs and SeNWs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), zeta potential, and UV-visible analysis. The antibacterial effects of SeNPs and SeNWs were confirmed by the macro-dilution minimum inhibi-tory concentration (MIC) test. SeNPs showed MIC values against methicillin-sensitive S. aureus (MSSA), methicillin-resistant S. aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and vanco-mycin-resistant enterococci (VRE) at concentrations of 20, 80, 320, and >320 μg/mL, respectively. On the other hand, SeNWs showed a MIC value of >320 μg/mL against all tested bacteria. Therefore, MSSA, MRSA, and VRSA were selected for the bacteria to be tested, and SeNPs were selected as the antimicrobial agent for the following experiments. In the time-kill assay, SeNPs at a concentration of 4X MIC (80 and 320 μg/mL) showed bactericidal effects against MSSA and MRSA, respectively. At a concentration of 2X MIC (40 and 160 μg/mL), SeNPs showed bacteriostatic effects against MSSA and bactericidal effects against MRSA, respectively. In the synergy test, SeNPs showed a synergistic effect with linezolid (LZD) through protein degradation against MSSA and MRSA. In conclusion, these results suggest that SeNPs can be candidates for antibacterial substitutes and supplements against MDR bacteria for topical use, such as dressings. However, for use in clinical situations, additional experiments such as toxicity and synergistic mechanism tests of SeNPs are needed

    Timescales of Massive Human Entrainment

    Get PDF
    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend concepts of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment - as expressed by the content and patterns of hundreds of thousands of messages on Twitter - during the 2012 US presidential debates. By time locking these data sources, we quantify the impact of the unfolding debate on human attention. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient moments in the debate: Mentions in social media start within 5-10 seconds after the moment; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment.Comment: 20 pages, 7 figures, 6 tables, 4 supplementary figures. 2nd version revised according to peer reviewers' comments: more detailed explanation of the methods, and grounding of the hypothese

    Transcriptomic analysis of probable asymptomatic and symptomatic alzheimer brains

    Get PDF
    Individuals with intact cognition and neuropathology consistent with Alzheimer's disease (AD) are referred to as asymptomatic AD (AsymAD). These individuals are highly likely to develop AD, yet transcriptomic changes in the brain which might reveal mechanisms for their AD vulnerability are currently unknown. Entorhinal cortex, frontal cortex, temporal cortex and cerebellum tissue from 27 control, 33 AsymAD and 52 AD human brains were microarray expression profiled. Differential expression analysis identified a significant increase of transcriptomic activity in the frontal cortex of AsymAD subjects, suggesting fundamental changes in AD may initially begin within the frontal cortex region prior to AD diagnosis. Co-expression analysis identified an overactivation of the brain "glutamate-glutamine cycle", and disturbances in the brain energy pathways in both AsymAD and AD subjects, while the connectivity of key hub genes in this network indicates a shift from an already increased cell proliferation in AsymAD subjects to stress response and removal of amyloidogenic proteins in AD subjects. This study provides new insight into the earliest biological changes occurring in the brain prior to the manifestation of clinical AD symptoms and provides new potential therapeutic targets for early disease intervention
    corecore