5,135 research outputs found
Nuclear orbiting and anomalies in nuclear reactions
In this paper, we report our measurements of back-angle oxygen and carbon particle yields from 16O+89Y, 12C+93Nb reactions forming the same compound nucleus 105Ag at the same excitation energy and spin distribution. We find anomalously large oxygen yield and entrance channel dependence at high excitation energies from 16O+89Y reaction implying formation of a dinuclear orbiting complex. Possible connection between nuclear orbiting and fast fission is also discussed
Branching on multi-aggregated variables
open5siopenGamrath, Gerald; Melchiori, Anna; Berthold, Timo; Gleixner, Ambros M.; Salvagnin, DomenicoGamrath, Gerald; Melchiori, Anna; Berthold, Timo; Gleixner, Ambros M.; Salvagnin, Domenic
Objective assessment of blood and lymphatic vessel invasion and association with macrophage infiltration in cutaneous melanoma
The aims of this study were to investigate the role of vascular invasion (blood and lymphatic), vessel density and the presence of tumour-associated macrophages as prognostic markers in 202 cutaneous melanoma patients. Sections of primary melanoma were stained with lymphatic-specific antibody D2-40 to assess lymphatic vessel invasion and density in intratumoural and peritumoural areas; an antibody against endothelial marker CD34 was used to determine blood vessel invasion and density, and an antibody against CD68 was used to determine macrophage counts. Immunohistochemically determined vascular invasion (combined blood and lymphatic) was compared with that determined using haematoxylin and eosin (H&E) staining. The use of immunohistochemistry increased detection of vascular invasion from 8–30% of patients, and histological exam of H&E-stained tissue was associated with a false positive rate of 64%. Lymphatic vessel invasion occurred at a much higher frequency than blood vessel invasion (27 and 4% of patients, respectively). Although immunohistochemically detected vessel invasion was significantly associated with histological markers of adverse prognosis, such as increased Breslow thickness, ulceration and mitotic rate (all P<0.001), no associations with relapse-free or overall survival were observed. High macrophage counts were significantly associated with markers of aggressive disease, such as Breslow thickness, ulceration and mitotic rate (P<0.001, P<0.001, P=0.005, respectively), and lymphatic vessel invasion and high microvessel density (P=0.002 and P=0.003, respectively). These results suggest that vascular invasion is more accurately detected using immunohistochemistry and occurs predominantly via lymphatic vessels. The association of vessel characteristics with histological characteristics of the primary melanoma provides evidence for their biological importance in melanoma, but that they were not associated with clinical outcome attests to the value of existing histological prognostic biomarkers. We note that a high macrophage count may be associated with neovascularisation and primary tumour growth, and may also promote invasion through lymphatic vessels
Termoreverzibilni mukoadhezivni in situ hidrogel za oftalmičku primjenu: dizajniranje i optimizacija koristeći kombinaciju polimera
The purpose of the study was to develop an optimized thermoreversible in situ gelling ophthalmic drug delivery system based on Pluronic F 127, containing moxifloxacin hydrochloride as a model drug. A 32 full factorial design was employed with two polymers Pluronic F 68 and Gelrite as independent variables used in combination with Pluronic F 127. Gelation temperature, gel strength, bioadhesion force, viscosity and in vitro drug release after 1 and 10 h were selected as dependent variables. Pluronic F 68 loading with Pluronic F 127 was found to have a significant effect on gelation temperature of the formulation and to be of importance for gel formation at temperatures 3336 ºC. Gelrite loading showed a positive effect on bioadhesion force and gel strength and was also found helpful in controling the release rate of the drug. The quadratic mathematical model developed is applicable to predicting formulations with desired gelation temperature, gel strength, bioadhesion force and drug release properties.Cilj rada bio je razvoj i optimizacija termoreverzibilnog sustava za isporuku lijekova koji gelira in situ. Sustav je napravljen na bazi Pluronic F 127, a sadrži moksifloksacin hidroklorid kao modelni lijek. U radu je primjenjeno 32 potpuno faktorijsko dizajniranje s dva polimera, Pluronic F 68 i Gelrite kao nezavisnim varijablama koji su kombinirani s Pluronic F 127. Kao zavisne varijable odabrane su temperatura geliranja, čvrstoća gela, jačina bioadhezije, viskoznost i in vitro oslobađanje lijeka nakon 1 i 10 h. Pronađeno je da Pluronic F 68 u kombinaciji s Pluronic F 127 ima značajan učinak na temperaturu geliranja u rasponu od 33 do 36 C. S druge strane, Gelrite ima povoljan učinak na jačinu bioadhezije, čvrstoću gela i oslobađanje lijeka. Razvijen je kvadratni matematički model pomoću kojeg se može predvidjeti temperatura geliranja, čvrstoća gela, jačina bioadhezije i oslobađanje ljekovite tvari
Nuclear orbiting and anomalies in nuclear reactions
Abstract. In this paper,we report our measurements of back-angle oxygen and carbon particle yields from ¿ Nb reactions forming the same compound nucleus ½¼ Ag at the same excitation energy and spin distribution. We find anomalously large oxygen yield and entrance channel dependence at high excitation energies from ½ O · Y reaction implying formation of a dinuclear orbiting complex. Possible connection between nuclear orbiting and fast fission is also discussed
Magnetism, FeS colloids, and Origins of Life
A number of features of living systems: reversible interactions and weak
bonds underlying motor-dynamics; gel-sol transitions; cellular connected
fractal organization; asymmetry in interactions and organization; quantum
coherent phenomena; to name some, can have a natural accounting via
interactions, which we therefore seek to incorporate by expanding the horizons
of `chemistry-only' approaches to the origins of life. It is suggested that the
magnetic 'face' of the minerals from the inorganic world, recognized to have
played a pivotal role in initiating Life, may throw light on some of these
issues. A magnetic environment in the form of rocks in the Hadean Ocean could
have enabled the accretion and therefore an ordered confinement of
super-paramagnetic colloids within a structured phase. A moderate H-field can
help magnetic nano-particles to not only overcome thermal fluctuations but also
harness them. Such controlled dynamics brings in the possibility of accessing
quantum effects, which together with frustrations in magnetic ordering and
hysteresis (a natural mechanism for a primitive memory) could throw light on
the birth of biological information which, as Abel argues, requires a
combination of order and complexity. This scenario gains strength from
observations of scale-free framboidal forms of the greigite mineral, with a
magnetic basis of assembly. And greigite's metabolic potential plays a key role
in the mound scenario of Russell and coworkers-an expansion of which is
suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed
Krishnaswami Alladi, Springer 201
First search for gravitational waves from the youngest known neutron star
We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia
A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser
Interferometer Gravitational-Wave Observatory. It searches gravitational-wave frequencies from 100 to 300 Hz
and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and
for different spin-down mechanisms. No gravitational-wave signal was detected. Within the range of search
frequencies, we set 95% confidence upper limits of (0.7–1.2) × 10^(−24) on the intrinsic gravitational-wave
strain, (0.4–4) × 10^(−4) on the equatorial ellipticity of the neutron star, and 0.005–0.14 on the amplitude of
r-mode oscillations of the neutron star. These direct upper limits beat indirect limits derived from energy
conservation and enter the range of theoretical predictions involving crystalline exotic matter or runaway r-modes.
This paper is also the first gravitational-wave search to present upper limits on the r-mode amplitude
Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts
Aims: Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia.
Methods and Results: FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (βKlotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased.
Conclusion: In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia
Search for Gravitational-wave Inspiral Signals Associated with Short Gamma-ray Bursts During LIGO's Fifth and Virgo's First Science Run
Progenitor scenarios for short gamma-ray bursts (short GRBs) include coalescenses of two neutron stars or a neutron star and black hole, which would necessarily be accompanied by the emission of strong gravitational waves. We present a search for these known gravitational-wave signatures in temporal and directional coincidence with 22 GRBs that had sufficient gravitational-wave data available in multiple instruments during LIGO's fifth science run, S5, and Virgo's first science run, VSR1. We find no statistically significant gravitational-wave candidates within a [ – 5, + 1) s window around the trigger time of any GRB. Using the Wilcoxon-Mann-Whitney U-test, we find no evidence for an excess of weak gravitational-wave signals in our sample of GRBs. We exclude neutron star-black hole progenitors to a median 90% confidence exclusion distance of 6.7 Mpc
- …