199 research outputs found

    Designing Scholarships To Improve College Success: Final Report On the Performance-Based Scholarship Demonstration

    Get PDF
    Performance-based scholarships have two main goals: to give students more money for college and to provide incentives for academic progress. They are designed to reduce the financial burden on low-income students and help them progress academically by offering financial aid contingent upon meeting pre-specified academic benchmarks. The scholarships are intended to cover a modest amount of students' educational costs during the semesters they are offered -- generally between 15 and 25 percent of students' unmet financial need, the difference between students' calculated financial need to attend college and the financial aid they are awarded. The money is paid directly to students, on top of their existing federal and state need-based financial aid, and the students themselves decide how best to use the funds. MDRC launched the Performance-Based Scholarship Demonstration in 2008 to evaluate the effectiveness of these scholarships for as broad a range of low-income students as possible, in a variety of settings, and with varying incentive structures. As such, the evaluation includes more than 12,000 students in institutions across six states to test different performance-based scholarship designs. These results show that even relatively moderate investments in low-income students' education can have modest but long-lasting impacts on their academic outcomes. These findings may be especially relevant to states, institutions, and private scholarship providers seeking purposeful and efficient ways to give low-income students additional financial aid that can also help them succeed academically

    Fluid dynamics alters liquid-liquid phase separation in confined aqueous two-phase systems

    Full text link
    Liquid-liquid phase separation is key to understanding aqueous two-phase systems (ATPS) arising throughout cell biology, medical science, and the pharmaceutical industry. Controlling the detailed morphology of phase-separating compound droplets leads to new technologies for efficient single-cell analysis, targeted drug delivery, and effective cell scaffolds for wound healing. We present a computational model of liquid-liquid phase separation relevant to recent laboratory experiments with gelatin-polyethylene glycol mixtures. We include buoyancy and surface-tension-driven finite viscosity fluid dynamics with thermally induced phase separation. We show that the fluid dynamics greatly alters the evolution and equilibria of the phase separation problem. Notably, buoyancy plays a critical role in driving the ATPS to energy-minimizing crescent-shaped morphologies and shear flows can generate a tenfold speedup in particle formation. Neglecting fluid dynamics produces incorrect minimum-energy droplet shapes. The model allows for optimization of current manufacturing procedures for structured microparticles and improves understanding of ATPS evolution in confined and flowing settings important in biology and biotechnology.Comment: 9 pages, 8 figures, 3 supplementary movies, to appear in Proceedings of the National Academy of Sciences, accompanying code and parameters to generate data available at https://github.com/ericwhester/multiphase-fluids-cod

    Fungi in a Warmer World: Middle Miocene Fungal Assemblages and Diversity from Alum Bluff, Florida

    Get PDF
    Fungi play a key role in the terrestrial carbon cycle, soil formation, and overall plant growth as terrestrial decomposers (1, 2). Thus, the study of fungi, especially in the fossil record, is critical to understanding how fungal assemblages will react to future warming events. Fossil fungi provide a large-scale, long-term dataset unavailable from modern records, allowing for the generation of viable paleoclimate reconstructions and predictions (3, 4). Despite their importance and advantages in forming ecological and climatological interpretations, deep-time fungi have been underutilized (3). The Fungi in a Warmer World (FiaWW) project aims to deliver the first global view of fungal biodiversity, ecology, and biogeography for the Miocene Climate Optimum (MCO): the warmest interval of the last 23 MY. The MCO is a good proxy for near-future climate change scenarios because atmospheric CO2 concentrations ranged between current concentrations of ~400ppm and future projected concentrations for the end of this century (5, 6).https://scholarworks.moreheadstate.edu/celebration_posters_2022/1040/thumbnail.jp

    Optimization of an Optical Testbed for Characterization of EXCLAIM u-Spec Integrated Spectrometers

    Full text link
    We describe a testbed to characterize the optical response of compact superconducting on-chip spectrometers in development for the Experiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM) mission. EXCLAIM is a balloonborne far-infrared experiment to probe the CO and CII emission lines in galaxies from redshift 3.5 to the present. The spectrometer, called u-Spec, comprises a diffraction grating on a silicon chip coupled to kinetic inductance detectors (KIDs) read out via a single microwave feedline. We use a prototype spectrometer for EXCLAIM to demonstrate our ability to characterize the spectrometers spectral response using a photomixer source. We utilize an on-chip reference detector to normalize relative to spectral structure from the off-chip optics and a silicon etalon to calibrate the absolute frequency

    Interstitial Lung Abnormalities After Hospitalization for Covid-19 in Patients With Cancer: A Prospective Cohort Study

    Get PDF
    INTRODUCTION: Survivors of SARS-CoV-2 pneumonia often develop persistent respiratory symptom and interstitial lung abnormalities (ILAs) after infection. Risk factors for ILA development and duration of ILA persistence after SARS-CoV-2 infection are not well described in immunocompromised hosts, such as cancer patients. METHODS: We conducted a prospective cohort study of 95 patients at a major cancer center and 45 patients at a tertiary referral center. We collected clinical and radiographic data during the index hospitalization for COVID-19 pneumonia and measured pneumonia severity using a semi-quantitative radiographic score, the Radiologic Severity Index (RSI). Patients were evaluated in post-COVID-19 clinics at 3 and 6 months after discharge and underwent comprehensive pulmonary evaluations (symptom assessment, chest computed tomography, pulmonary function tests, 6-min walk test). The association of clinical and radiological factors with ILAs at 3 and 6 months post-discharge was measured using univariable and multivariable logistic regression. RESULTS: Sixty-six (70%) patients of cancer cohort had ILAs at 3 months, of whom 39 had persistent respiratory symptoms. Twenty-four (26%) patients had persistent ILA at 6 months after hospital discharge. In adjusted models, higher peak RSI at admission was associated with ILAs at 3 (OR 1.5 per 5-point increase, 95% CI 1.1-1.9) and 6 months (OR 1.3 per 5-point increase, 95% CI 1.1-1.6) post-discharge. Fibrotic ILAs (reticulation, traction bronchiectasis, and architectural distortion) were more common at 6 months post-discharge. CONCLUSIONS: Post-COVID-19 ILAs are common in cancer patients 3 months after hospital discharge, and peak RSI and older age are strong predictors of persistent ILAs

    COVID-19 Vaccine Uptake Among Residents and Staff Members of Assisted Living and Residential Care Communities-Pharmacy Partnership for Long-Term Care Program, December 2020-April 2021

    Get PDF
    OBJECTIVES: In December 2020, CDC launched the Pharmacy Partnership for Long-Term Care Program to facilitate COVID-19 vaccination of residents and staff in long-term care facilities (LTCFs), including assisted living (AL) and other residential care (RC) communities. We aimed to assess vaccine uptake in these communities and identify characteristics that might impact uptake. DESIGN: Cross-sectional study. SETTING AND PARTICIPANTS: AL/RC communities in the Pharmacy Partnership for Long-Term Care Program that had ≥1 on-site vaccination clinic during December 18, 2020-April 21, 2021. METHODS: We estimated uptake using the cumulative number of doses of COVID-19 vaccine administered and normalizing by the number of AL/RC community beds. We estimated the percentage of residents vaccinated in 3 states using AL census counts. We linked community vaccine administration data with county-level social vulnerability index (SVI) measures to calculate median vaccine uptake by SVI tertile. RESULTS: In AL communities, a median of 67 residents [interquartile range (IQR): 48-90] and 32 staff members (IQR: 15-60) per 100 beds received a first dose of COVID-19 vaccine at the first on-site clinic; in RC, a median of 8 residents (IQR: 5-10) and 5 staff members (IQR: 2-12) per 10 beds received a first dose. Among 3 states with available AL resident census data, median resident first-dose uptake at the first clinic was 93% (IQR: 85-108) in Connecticut, 85% in Georgia (IQR: 70-102), and 78% (IQR: 56-91) in Tennessee. Among both residents and staff, cumulative first-dose vaccine uptake increased with increasing social vulnerability related to housing type and transportation. CONCLUSIONS AND IMPLICATIONS: COVID-19 vaccination of residents and staff in LTCFs is a public health priority. On-site clinics may help to increase vaccine uptake, particularly when transportation may be a barrier. Ensuring steady access to COVID-19 vaccine in LTCFs following the conclusion of the Pharmacy Partnership is critical to maintaining high vaccination coverage among residents and staff

    Sensitive Detection of Plasmodium vivax Using a High-Throughput, Colourimetric Loop Mediated Isothermal Amplification (HtLAMP) Platform: A Potential Novel Tool for Malaria Elimination.

    Get PDF
    INTRODUCTION: Plasmodium vivax malaria has a wide geographic distribution and poses challenges to malaria elimination that are likely to be greater than those of P. falciparum. Diagnostic tools for P. vivax infection in non-reference laboratory settings are limited to microscopy and rapid diagnostic tests but these are unreliable at low parasitemia. The development and validation of a high-throughput and sensitive assay for P. vivax is a priority. METHODS: A high-throughput LAMP assay targeting a P. vivax mitochondrial gene and deploying colorimetric detection in a 96-well plate format was developed and evaluated in the laboratory. Diagnostic accuracy was compared against microscopy, antigen detection tests and PCR and validated in samples from malaria patients and community controls in a district hospital setting in Sabah, Malaysia. RESULTS: The high throughput LAMP-P. vivax assay (HtLAMP-Pv) performed with an estimated limit of detection of 1.4 parasites/ μL. Assay primers demonstrated cross-reactivity with P. knowlesi but not with other Plasmodium spp. Field testing of HtLAMP-Pv was conducted using 149 samples from symptomatic malaria patients (64 P. vivax, 17 P. falciparum, 56 P. knowlesi, 7 P. malariae, 1 mixed P. knowlesi/P. vivax, with 4 excluded). When compared against multiplex PCR, HtLAMP-Pv demonstrated a sensitivity for P. vivax of 95% (95% CI 87-99%); 61/64), and specificity of 100% (95% CI 86-100%); 25/25) when P. knowlesi samples were excluded. HtLAMP-Pv testing of 112 samples from asymptomatic community controls, 7 of which had submicroscopic P. vivax infections by PCR, showed a sensitivity of 71% (95% CI 29-96%; 5/7) and specificity of 93% (95% CI87-97%; 98/105). CONCLUSION: This novel HtLAMP-P. vivax assay has the potential to be a useful field applicable molecular diagnostic test for P. vivax infection in elimination settings
    corecore