30 research outputs found

    Brain metastases from breast cancer: lessons from experimental magnetic resonance imaging studies and clinical implications.

    Get PDF
    Breast cancer that has metastasized to the brain presents difficult clinical challenges. This diagnosis comes with high mortality rates, largely due to complexities in early detection and ineffective therapies associated with both dormancy and impermeability of the blood-brain barrier (BBB). Magnetic resonance imaging (MRI) is the current gold standard for diagnosis and assessment of brain tumors. It has been used clinically to investigate metastatic development as well as monitor response to therapy. Here, we describe preclinical imaging strategies that we have used to study the development of brain metastases due to breast cancer. Using this approach, we have identified three subsets of metastatic disease: permeable metastases, nonpermeable metastases, and solitary, dormant cancer cells, which likely have very different biology and responses to therapy. The ability to simultaneously monitor the spatial and temporal distribution of dormant cancer cells, metastatic growth, and associated tumor permeability can provide great insight into factors that contribute to malignant proliferation. Our preclinical findings suggest that standard clinical detection strategies may underestimate the true metastatic burden of breast cancer that has metastasized to the brain. A better understanding of true metastatic burden in brains will be important to assist in the development of more effective chemotherapeutics-particularly those targeted to cross the BBB-as well as detection of small nonpermeable metastases

    Prognostic indices for brain metastases – usefulness and challenges

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This review addresses the strengths and weaknesses of 6 different prognostic indices, published since the Radiation Therapy Oncology Group (RTOG) developed and validated the widely used 3-tiered prognostic index known as recursive partitioning analysis (RPA) classes, i.e. between 1997 and 2008. In addition, other analyses of prognostic factors in groups of patients, which typically are underrepresented in large trials or databases, published in the same time period are reviewed.</p> <p>Methods</p> <p>Based on a systematic literature search, studies with more than 20 patients were included. The methods and results of prognostic factor analyses were extracted and compared. The authors discuss why current data suggest a need for a more refined index than RPA.</p> <p>Results</p> <p>So far, none of the indices has been derived from analyses of all potential prognostic factors. The 3 most recently published indices, including the RTOG's graded prognostic assessment (GPA), all expanded from the primary 3-tiered RPA system to a 4-tiered system. The authors' own data confirm the results of the RTOG GPA analysis and support further evaluation of this tool.</p> <p>Conclusion</p> <p>This review provides a basis for further refinement of the current prognostic indices by identifying open questions regarding, e.g., performance of the ideal index, evaluation of new candidate parameters, and separate analyses for different cancer types. Unusual primary tumors and their potential differences in biology or unique treatment approaches are not well represented in large pooled analyses.</p

    Brain metastasis development and poor survival associated with carcinoembryonic antigen (CEA) level in advanced non-small cell lung cancer: a prospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Central nervous system is a common site of metastasis in NSCLC and confers worse prognosis and quality of life. The aim of this prospective study was to evaluate the prognostic significance of clinical-pathological factors (CPF), serum CEA levels, and EGFR and HER2 tissue-expression in brain metastasis (BM) and overall survival (OS) in patients with advanced NSCLC.</p> <p>Methods</p> <p>In a prospective manner, we studied 293 patients with NSCLC in IIIB-IV clinical stage. They received standard chemotherapy. CEA was measured prior to treatment; EGFR and HER2 were evaluated by immunohistochemistry. BM development was confirmed by MRI in symptomatic patients.</p> <p>Results</p> <p>BM developed in 27, and 32% of patients at 1 and 2 years of diagnosis with adenocarcinoma (RR 5.2; 95% CI, 1.002–29; p = 0.05) and CEA ≥ 40 ng/mL (RR 11.4; 95% CI, 1.7–74; <it>p </it>< 0.01) as independent associated factors. EGFR and HER2 were not statistically significant. Masculine gender (RR 1.4; 95% CI, 1.002–1.9; <it>p </it>= 0.048), poor performance status (RR 1.8; 95% CI, 1.5–2.3; <it>p </it>= 0.002), advanced clinical stage (RR 1.44; 95% CI, 1.02–2; <it>p </it>= 0.04), CEA ≥ 40 ng/mL (RR 1.5; 95% CI, 1.09–2.2; <it>p </it>= 0.014) and EGFR expression (RR 1.6; 95% CI, 1.4–1.9; <it>p </it>= 0.012) were independent associated factors to worse OS.</p> <p>Conclusion</p> <p>High CEA serum level is a risk factor for BM development and is associated with poor prognosis in patients with advanced NSCLC. Surface expression of CEA in tumor cells could be the physiopathological mechanism for invasion to CNS.</p

    Japanese Society for Cancer of the Colon and Rectum (JSCCR) Guidelines 2014 for treatment of colorectal cancer

    Full text link
    corecore