35 research outputs found

    Breaking bad: necroptosis in the pathogenesis of gastrointestinal diseases

    Get PDF
    A delicate balance between programmed cell death and proliferation of intestinal epithelial cells (IEC) exists in the gut to maintain homeostasis. Homeostatic cell death programs such as anoikis and apoptosis ensure the replacement of dead epithelia without overt immune activation. In infectious and chronic inflammatory diseases of the gut, this balance is invariably disturbed by increased levels of pathologic cell death. Pathological forms of cell death such as necroptosis trigger immune activation barrier dysfunction, and perpetuation of inflammation. A leaky and inflamed gut can thus become a cause of persistent low-grade inflammation and cell death in other organs of the gastrointestinal (GI) tract, such as the liver and the pancreas. In this review, we focus on the advances in the molecular and cellular understanding of programmed necrosis (necroptosis) in tissues of the GI tract. In this review, we will first introduce the reader to the basic molecular aspects of the necroptosis machinery and discuss the pathways leading to necroptosis in the GI system. We then highlight the clinical significance of the preclinical findings and finally evaluate the different therapeutic approaches that attempt to target necroptosis against various GI diseases. Finally, we review the recent advances in understanding the biological functions of the molecules involved in necroptosis and the potential side effects that may occur due to their systemic inhibition. This review is intended to introduce the reader to the core concepts of pathological necroptotic cell death, the signaling pathways involved, its immuno-pathological implications, and its relevance to GI diseases. Further advances in our ability to control the extent of pathological necroptosis will provide better therapeutic opportunities against currently intractable GI and other diseases

    Novel amino-β-lactam derivatives as potent cholesterol absorption inhibitors

    Get PDF
    Two new trans-(3R, 4R)-amino-β-lactam derivatives and their diastereoisomeric mixtures were synthesized as ezetimibe bioisosteres and tested in in vitro and in vivo experiments as novel β-lactam cholesterol absorption inhibitors. Both compounds exhibited low cytotoxicity in MDCKII, hNPC1L1/MDCKII, and HepG2 cell lines and potent inhibitory effect in hNPC1L1/MDCKII cells. In addition, these compounds markedly reduced cholesterol absorption in mice, resulting in reduced cholesterol concentrations in plasma, liver, and intestine. We determined the crystal structure of one amino-β-lactam derivative to establish unambiguously both the absolute and relative configuration at the new stereogenic centre C17, which was assigned to be S. The pKa values for both compounds are 9.35, implying that the amino-β-lactam derivatives and their diastereoisomeric mixtures are in form of ammonium salt in blood and the intestine. The IC50 value for the diastereoisomeric mixture is 60 μM. In vivo, it efficiently inhibited cholesterol absorption comparable to ezetimibe

    Novel role of a triglyceride-synthesizing enzyme:DGAT1 at the crossroad between triglyceride and cholesterol metabolism

    Get PDF
    AbstractAcyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1−/−) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1−/− and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia

    Lysosomal acid lipase regulates VLDL synthesis and insulin sensitivity in mice

    Get PDF
    AIMS/HYPOTHESIS: Lysosomal acid lipase (LAL) hydrolyses cholesteryl esters and triacylglycerols (TG) within lysosomes to mobilise NEFA and cholesterol. Since LAL-deficient (Lal (-/-) ) mice suffer from progressive loss of adipose tissue and severe accumulation of lipids in hepatic lysosomes, we hypothesised that LAL deficiency triggers alternative energy pathway(s). METHODS: We studied metabolic adaptations in Lal (-/-) mice. RESULTS: Despite loss of adipose tissue, Lal (-/-) mice show enhanced glucose clearance during insulin and glucose tolerance tests and have increased uptake of [(3)H]2-deoxy-D-glucose into skeletal muscle compared with wild-type mice. In agreement, fasted Lal (-/-) mice exhibit reduced glucose and glycogen levels in skeletal muscle. We observed 84% decreased plasma leptin levels and significantly reduced hepatic ATP, glucose, glycogen and glutamine concentrations in fed Lal (-/-) mice. Markedly reduced hepatic acyl-CoA concentrations decrease the expression of peroxisome proliferator-activated receptor α (PPARα) target genes. However, treatment of Lal (-/-) mice with the PPARα agonist fenofibrate further decreased plasma TG (and hepatic glucose and glycogen) concentrations in Lal (-/-) mice. Depletion of hepatic nuclear factor 4α and forkhead box protein a2 in fasted Lal (-/-) mice might be responsible for reduced expression of microsomal TG transfer protein, defective VLDL synthesis and drastically reduced plasma TG levels. CONCLUSIONS/INTERPRETATION: Our findings indicate that neither activation nor inactivation of PPARα per se but rather the availability of hepatic acyl-CoA concentrations regulates VLDL synthesis and subsequent metabolic adaptations in Lal (-/-) mice. We conclude that decreased plasma VLDL production enhances glucose uptake into skeletal muscle to compensate for the lack of energy supply

    The Role of Programmed Necrosis in Colorectal Cancer

    No full text
    For quite a long time, necrosis was considered a chaotic and unorganized form of cell death. However, studies conducted during the past few decades unveiled multiple types of programmed necrosis, such as necroptosis, pyroptosis and ferroptosis. These types of programmed necrosis have been shown to play crucial roles in mediating pathological processes, including tumorigenesis. Almost all key mediators, such as RIPK3 and MLKL in necroptosis, GSDMD and caspase 1/11 in pyroptosis and GPX4 in ferroptosis, are highly expressed in intestinal epithelial cells (IECs). An aberrant increase or decrease in programmed necrosis in IECs has been connected to intestinal disorders. Here, we review the pathways of programmed necrosis and the specific consequences of regulated necrosis in colorectal cancer (CRC) development. Translational aspects of programmed necrosis induction as a novel therapeutic alternative against CRC are also discussed

    A novel microdeletion affecting the CETP gene raises HDL-associated cholesterol levels

    No full text
    We describe a novel, inherited 16q13 microdeletion that removes CETP and several nearby genes. The proband was originally referred for severe childhood-onset obesity and moderate developmental delay, but his fasting lipid profile revealed relatively high HDL-cholesterol and low LDL-cholesterol for age, despite his obesity. Testing first-degree relatives identified two other microdeletion carriers. Functional assays in affected individuals showed decreased CETP mRNA expression and enzymatic activity. This microdeletion may or may not be pathogenic for obesity and developmental delay, but based on the lipid profile, the functional studies, and the phenotype of other patients with loss-of-function mutations of CETP, we believe this microdeletion to be antipathogenic for cardiovascular disease.Medical Genetics, Department ofMedicine, Faculty ofNon UBCReviewedFacult

    Intestinal GATA4 deficiency protects from diet-induced hepatic steatosis

    Get PDF
    Background & AimsGATA4, a zinc finger domain transcription factor, is critical for jejunal identity. Mice with an intestine-specific GATA4 deficiency (GATA4iKO) are resistant to diet-induced obesity and insulin resistance. Although they have decreased intestinal lipid absorption, hepatic de novo lipogenesis is inhibited. Here, we investigated dietary lipid-dependent and independent effects on the development of steatosis and fibrosis in GATA4iKO mice.MethodsGATA4iKO and control mice were fed a Western-type diet (WTD) or a methionine and choline-deficient diet (MCDD) for 20 and 3weeks, respectively. Functional effects of GATA4iKO on diet-induced liver steatosis were investigated.ResultsWTD-but not MCDD-fed GATA4iKO mice showed lower hepatic concentrations of triglycerides, free fatty acids, and thiobarbituric acid reactive species and had reduced expression of lipogenic as well as fibrotic genes compared with controls. Reduced nuclear sterol regulatory element-binding protein-1c protein levels were accompanied by lower lipogenic gene expression. Oil red O and Sirius Red staining of liver sections confirmed the observed reduction in hepatic lipid accumulation and fibrosis. Immunohistochemical staining revealed an increased number of jejunal glucagon-like peptide 1 (GLP-1) positive cells in GATA4iKO mice. Consequently, we found enhanced phosphorylation of hepatic AMP-activated protein kinase and acetyl-CoA carboxylase alpha.ConclusionsOur results provide strong indications for a protective effect of intestinal GATA4 deficiency on the development of hepatic steatosis and fibrosis via GLP-1, thereby blocking hepatic de novo lipogenesis

    The PPARα Agonist Fenofibrate Prevents Formation of Protein Aggregates (Mallory-Denk bodies) in a Murine Model of Steatohepatitis-like Hepatotoxicity

    No full text
    Abstract Chronic intoxication of mice with the porphyrinogenic compound 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) leads to morphological and metabolic changes closely resembling steatohepatitis, a severe form of metabolic liver disease in humans. Since human steatohepatitis (both the alcoholic and non-alcoholic type) is characterized by reduced expression of PPARα and disturbed lipid metabolism we investigated the role of this ligand-activated receptor in the development of DDC-induced liver injury. Acute DDC-intoxication was accompanied by early significant downregulation of Pparα mRNA expression along with PPARα-controlled stress-response and lipid metabolism genes that persisted in the chronic stage. Administration of the specific PPARα agonist fenofibrate together with DDC prevented the downregulation of PPARα-associated genes and also improved the stress response of Nrf2-dependent redox-regulating genes. Moreover, oxidative stress and inflammation were strongly reduced by DDC/fenofibrate co-treatment. In addition, fenofibrate prevented the disruption of hepatocyte intermediate filament cytoskeleton and the formation of Mallory-Denk bodies at late stages of DDC intoxication. Our findings show that, like in human steatohepatitis, PPARα is downregulated in the DDC model of steatohepatitis-like hepatocellular damage. Its downregulation and the pathomorphologic features of steatohepatitis are prevented by co-administration of fenofibrate

    Cholesteryl ester accumulation and accelerated cholesterol absorption in intestine-specific hormone sensitive lipase-null mice

    No full text
    Hormone sensitive lipase (HSL) regulates the hydrolysis of acylglycerols and cholesteryl esters (CE) in various cells and organs, including enterocytes of the small intestine. The physiological role of this enzyme in enterocytes, however, stayed elusive. In the present study we generated mice lacking HSL exclusively in the small intestine (HSLiKO) to investigate the impact of HSL deficiency on intestinal lipid metabolism and the consequences on whole body lipid homeostasis. Chow diet-fed HSLiKO mice showed unchanged plasma lipid concentrations. In addition, feeding with high fat/high cholesterol (HF/HC) diet led to unaltered triglyceride but increased plasma cholesterol concentrations and CE accumulation in the small intestine. The same effect was observed after an acute cholesterol load. Gavaging of radioactively labeled cholesterol resulted in increased abundance of radioactivity in plasma, liver and small intestine of HSLiKO mice 4h post-gavaging. However, cholesterol absorption determined by the fecal dual-isotope ratio method revealed no significant difference, suggesting that HSLiKO mice take up the same amount of cholesterol but in an accelerated manner. mRNA expression levels of genes involved in intestinal cholesterol transport and esterification were unchanged but we observed downregulation of HMG-CoA reductase and synthase and consequently less intestinal cholesterol biosynthesis. Taken together our study demonstrates that the lack of intestinal HSL leads to CE accumulation in the small intestine, accelerated cholesterol absorption and decreased cholesterol biosynthesis, indicating that HSL plays an important role in intestinal cholesterol homeostasis

    Transition between Acute and Chronic Hepatotoxicity in Mice Is Associated with Impaired Energy Metabolism and Induction of Mitochondrial Heme Oxygenase-1

    Get PDF
    <div><p>The formation of protein inclusions is frequently associated with chronic metabolic diseases. In mice, short-term intoxication with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) leads to hepatocellular damage indicated by elevated serum liver enzyme activities, whereas only minor morphological changes are observed. Conversely, chronic administration of DDC for several weeks results in severe morphological damage, characterized by hepatocellular ballooning, disruption of the intermediate filament cytoskeleton, and formation of Mallory-Denk bodies consisting predominantly of misfolded keratins, Sqstm1/p62, and heat shock proteins. To evaluate the mechanistic underpinnings for this dichotomy we dissected the time-course of DDC intoxication for up to 10 weeks. We determined body weight change, serum liver enzyme activities, morphologic alterations, induction of antioxidant response (heme oxygenase-1, HO-1), oxidative damage and ATP content in livers as well as respiration, oxidative damage and the presence and activity of HO-1 in endoplasmic reticulum and mitochondria (mtHO-1). Elevated serum liver enzyme activity and oxidative liver damage were already present at early intoxication stages without further subsequent increase. After 2 weeks of intoxication, mice had transiently lost 9% of their body weight, liver ATP-content was reduced to 58% of controls, succinate-driven respiration was uncoupled from ATP-production and antioxidant response was associated with the appearance of catalytically active mtHO-1. Oxidative damage was associated with both acute and chronic DDC toxicity whereas the onset of chronic intoxication was specifically associated with mitochondrial dysfunction which was maximal after 2 weeks of intoxication. At this transition stage, adaptive responses involving mtHO-1 were induced, indirectly leading to improved respiration and preventing further drop of ATP levels. Our observations clearly demonstrate principally different mechanisms for acute and chronic toxic damage.</p></div
    corecore