20 research outputs found

    Clec9a-mediated ablation of conventional dendritic cells suggests a lymphoid path to generating dendritic cells In Vivo

    Get PDF
    Conventional dendritic cells (cDCs) are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA) mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired

    Quasiliving cationic ring-opening polymerization of 2-ethyl-2-oxazoline in benzotrifluoride, as an alternative reaction medium

    Get PDF
    Cationic ring-opening polymerization (CROP) of 2-ethyl-2-oxazoline (EtOx) was systematically investigated in benzotrifluoride (BTF), which is considered as an environmentally less harmful solvent than many conventional reaction media. Simultaneously, polymerizations in conventional solvents, such as acetonitrile, N,N-dimethylacetamide and toluene, were also carried out for comparison in the 80-100 degrees C temperature range. Kinetic experiments revealed that the monomer consumption occurs by first order kinetics and the number average molecular weights linearly increase in line with the theoretical molecular weight as a function of monomer conversion. These findings indicate that the polymerization takes place by quasiliving CROP in all the investigated solvents, including BTF as well, resulting in PEtOx with prederminded molecular weights and polydispersities of 1.3-15. The highest polymerization rates were obtained in BTF, resulting in high conversions in short reaction times at 100 degrees C reaction temperature. The Arrhenius parameters of the polymerization of EtOx in BTF indicates relatively high activation energy in comparison with other applied solvents, however, a compensation effect between the activation energies and frequency factor is observed for such polymerization in a variety of solvents. Our findings are expected to enable the convenient synthesis of polyoxazolines and polyoxazoline-based well-defined polymer architectures in BTF, an environmentally advantageous alternative solvent to harmful polymerization media, with high polymerization rates in short reaction times without the need for any special conditions or equipment.Peer reviewe

    Tissue niches formed by intestinal mesenchymal stromal cells in mucosal homeostasis and immunity.

    No full text
    The gastrointestinal tract is the largest mucosal surface in our body and accommodates the majority of the total lymphocyte population. Being continuously exposed to both harmless antigens and potentially threatening pathogens, the intestinal mucosa requires the integration of multiple signals for balancing immune responses. This integration is certainly supported by tissue-resident intestinal mesenchymal cells (IMCs), yet the molecular mechanisms whereby IMCs contribute to these events remain largely undefined. Recent studies using single-cell profiling technologies indicated a previously unappreciated heterogeneity of IMCs and provided further knowledge which will help to understand dynamic interactions between IMCs and hematopoietic cells of the intestinal mucosa. In this review, we focus on recent findings on the immunological functions of IMCs: On one hand, we discuss the steady-state interactions of IMCs with epithelial cells and hematopoietic cells. On the other hand, we summarize our current knowledge about the contribution of IMCs to the development of intestinal inflammatory conditions, such as infections, inflammatory bowel disease, and fibrosis. By providing a comprehensive list of cytokines and chemokines produced by IMCs under homeostatic and inflammatory conditions, we highlight the significant immunomodulatory and tissue niche forming capacities of IMCs

    CD11b+^{+}Ly6C++^{++}Ly6G^{-} cells with suppressive activity towards T cells accumulate in lungs of influenza A virus-infected mice

    No full text
    Influenza A virus (IAV) infection causes an acute respiratory disease characterized by a strong inflammatory immune response and severe immunopathology. Proinflammatory mechanisms are well described in the murine IAV infection model, but less is known about the mechanisms leading to the resolution of inflammation. Here, we analyzed the contribution of CD11b+^{+}Ly6C++^{++}Ly6G^{-} cells to this process. An accumulation of CD11b+^{+}Ly6C++^{++}Ly6G^{-} cells within the lungs was observed during the course of IAV infection. Phenotypic characterization of these CD11b+^{+}Ly6C++^{++}Ly6G^{-} cells by flow cytometry and RNA-Seq revealed an activated phenotype showing both pro- and anti-inflammatory features, including the expression of inducible nitric oxide synthase (iNOS) by a fraction of cells in an IFN-γ-dependent manner. Moreover, CD11b+^{+}Ly6C++^{++}Ly6G^{-} cells isolated from lungs of IAV-infected animals displayed suppressive activity when tested in vitro, and iNOS inhibitors could abrogate this suppressive activity. Collectively, our data suggest that during IAV infection, CD11b+^{+}Ly6C++^{++}Ly6G^{-} cells acquire immunoregulatory function, which might contribute to the prevention of pathology during this life-threatening disease

    Impact of CCR7 on T-Cell Response and Susceptibility to Yersinia pseudotuberculosis Infection.

    No full text
    To successfully limit pathogen dissemination, an immunological link between the entry tissue of the pathogen and the underlying secondary lymphoid organs (SLOs) needs to be established to prime adaptive immune responses. Here, the prerequisite of CCR7 to mount host immune responses within SLOs during gastrointestinal Yersinia pseudotuberculosis infection to limit pathogen spread was investigated

    Persistence, Localization, and External Control of Transgene Expression After Single Injection of Adeno-Associated Virus into Injured Joints

    No full text
    A single intra-articular injection of adeno-associated virus (AAV) results in stable and controllable transgene expression in normal rat knees. Because undamaged joints are unlikely to require treatment, the study of AAV delivery in joint injury models is crucial to potential therapeutic applications. This study tests the hypotheses that persistent and controllable AAV-transgene expression are (1) highly localized to the cartilage when AAV is injected postinjury and (2) localized to the intra-articular soft tissues when AAV is injected preinjury. Two AAV injection time points, postinjury and preinjury, were investigated in osteochondral defect and anterior cruciate ligament transection models of joint injury. Rats injected with AAV tetracycline response element (TRE)–luciferase received oral doxycycline for 7 days. Luciferase expression was evaluated longitudinally for 6 months. Transgene expression was persistent and controllable with oral doxycycline for 6 months in all groups. However, the location of transgene expression was different: postinjury AAV-injected knees had luciferase expression highly localized to the cartilage, while preinjury AAV-injected knees had more widespread signal from intra-articular soft tissues. The differential transgene localization between preinjury and postinjury injection can be used to optimize treatment strategies. Highly localized postinjury injection appears advantageous for treatments targeting repair cells. The more generalized and controllable reservoir of transgene expression following AAV injection before anterior cruciate ligament transection (ACLT) suggests an intriguing concept for prophylactic delivery of joint protective factors to individuals at high risk for early osteoarthritis (OA). Successful external control of intra-articular transgene expression provides an added margin of safety for these potential clinical applications
    corecore