4 research outputs found

    Use of individual protection equipment and collective in case of accident during the transport of radioactive product - class 7

    Get PDF
    The personal protective equipment (PPE) are devices used by professionals against potential radiological hazards that may threaten the health or safety in the event of an accident or incident during the transport of radioactive material. The collective protection equipment (CPE) devices are used in place of the accident in order to protect people and the environment from risks such as safety signs, among others. This work will be part of the new edition of the NBR 9735 - Set of equipment for emergencies in land transport of dangerous goods - edited by the Brazilian Association of Technical Standards / ABNT - National Standardization Forum which CNEN participates in the Study Committee - B16 namely, dangerous, accounting for Class 7 radioactive materials. The Standard 9735 establishes the minimum set of equipment for emergencies in inland transport of dangerous goods, consisting of protective equipment to be used by the driver and staff involved (if any) in the transport operations of transport units, equipment for signaling, isolation of the area of occurrence (fault, accident and / or emergency). Thus, we will present a set of individual and collective equipment that must accompany the carriage of Class 7 products to meet the radiological accident situations and also establish a training base for the driver as the use of them

    The nuclear energy, public opinion and the awareness of work of nuclear institutions

    Get PDF
    With Brazil facing a prospect of expanding its nuclear-energy sources and the development of new nuclear techniques there is a need for imminent integration in the nuclear industry with the tool information. In this paper we propose the creation of a program aimed at the servers of the institutions that make up the Brazilian Nuclear Sector, with a view to preparing these to become multipliers in the dissemination of activities developed by the institution so that they can, with strong arguments, defending the work of industry criticism of this form of energy. The goal is to create an important process of change of mentality and attitude among people who relate to the servers in the industry, expanding the debate on the subject, so that society, clearly and free of prejudices can understand the benefits the use of nuclear energy

    Mapping of surface radiogenic heat production from in situ gamma spectrometry and chemical data of exhumed mantle peridotites at the St. Peter and St. Paul archipelago (equatorial Atlantic)

    No full text
    This work presents the first mapping of the radiogenic heat production (RHP) and the respective radiogenic heat flow (RHF) of the Saint Peter and Saint Paul Archipelago (SPSPA) located at 1°N in the Equatorial Atlantic Ocean. Using radiogenic heat producing elements (RPE) we inferred a radiogenic heat production ranging 0.08–0.68 μW/m3 (Median: 0.21 μW/m3 and Geometric mean: 0.25 μW/m3) by whole-rock chemical analysis and between 0.08 and 0.48 μW/m3 (Median: 0.19 μW/m3; Geometric mean: 0.19 μW/m3) by in situ Gamma radiation spectrometry. The mean of radiogenic heat production of mylonite rocks from SPSPA (0.22 μW/m3) is significantly higher than predicted values for ultramafic rocks as those largely outcropping in the SPSPA. This is probably due to the pervasive alteration of these rocks and the incorporation of little magma fractions during mylonitization. By converse, the average surface radiogenic heat flow (49.7 μW/m2) is lower than that predicted for the oceanic lithosphere, suggesting that the upper mantle contribution to the heat flow is also low in the SPSPA region. Based on the acquired data and the peculiar tectonics of the SPSPA we propose that the lithospheric mantle around the SPSPA area is colder than that surrounding the Equatorial Atlantic region
    corecore