25 research outputs found

    Performance and intestinal coliform counts in weaned piglets fed a probiotic culture (Lactobacillus casei subsp. casei CECT 4043) or an antibiotic

    Get PDF
    The production of biomass and antibacterial extracellular products by Lactobacillus casei subsp. casei CECT 4043 was followed in both batch and in realkalized fed-batch cultures. Enhanced concentrations of biomass and antibacterial extracellular products were obtained with the use of the latter fermentation technique in comparison with the batch mode. The culture obtained by fed-batch fermentation was mixed with skim milk and used to prepare a probiotic feed for weaned piglets. To test the effect of the potentially probiotic culture of L. casei on body weight gain, feed intake, feed conversion efficiency, and on fecal coliform counts of piglets, two groups of animals received either feed supplemented with the probiotic preparation or avilamycin for 28 days. The control group was fed nonsupplemented feed. At the end of the administration period (day 28), the groups receiving probiotic and avilamycin exhibited the highest average body weight gain values, although the mean feed intake and feed conversion efficiency values were not different among the groups (P > 0.05). For the entire experimental period (42 days), the control group exhibited the lowest feed intake value, the probiotic group exhibited the highest feed conversion efficiency value, and the antibiotic group exhibited the highest body weight gain (P 0.05). Fecal coliform values decreased (although not significantly) by day 28 in the three groups. However, the mean counts returned to pretreatment levels by day 42 in all groups.Instituto Nacional de Investigación y Tecnología Agraria | Ref. CAL01-045-C2-

    Effects of feeding of two potentially probiotic preparations from lactic acid bacteria on the performance and faecal microflora of broiler chickens

    Get PDF
    The aim of this study was to evaluate the potential of two probiotic preparations, containing live lactic acid bacteria (Lactococcus lactis CECT 539 and Lactobacillus casei CECT 4043) and their products of fermentation (organic acids and bacteriocins), as a replacement for antibiotics in stimulating health and growth of broiler chickens. The effects of the supplementation of both preparations (with proven probiotic effect in weaned piglets) and an antibiotic (avilamycin) on body weight gain (BWG), feed intake (FI), feed consumption efficiency (FCE), relative intestinal weight, and intestinal microbiota counts were studied in 1- day posthatch chickens. The experiments were conducted with medium-growth Sasso X44 chickens housed in cages and with nutritional stressed Ross 308 broiler distributed in pens. Consumption of the different diets did not affect significantly the final coliform counts in Sasso X44 chickens. However, counts of lactic acid bacteria and mesophilic microorganisms were higher in the animals receiving the two probiotic preparations (P < 0.05). In the second experiment, although no differences in BWG were observed between treatments, Ross 308 broilers receiving the probiotic Lactobacillus preparation exhibited the lowest FCE values and were considered the most efficient at converting feed into live weight.Instituto Nacional de Investigación y Tecnología Agraria | Ref. CAL01-045-C2-

    Modelling the biphasic growth and product formation by Enterococcus faecium CECT 410 in realkalized fed-batch fermentations in whey

    Get PDF
    The influence of initial pH on growth and nutrient (total sugars, nitrogen, and phosphorous) consumption by Enterococcus faecium CECT 410 was studied during batch cultures in whey. With these data, two realkalized fed-batch fermentations were developed using different feeding substrates. The shift from homolactic to mixed acid fermentation, the biphasic kinetics observed for cell growth and nitrogen consumption and the increase in the concentrations of biomass and products (lactic acid, acetic acid, ethanol, and butane-2,3-diol) were the most noteworthy observations of these cultures. Modelling the fed-batch growth of Ent. faecium with the Logistic and bi-Logistic models was not satisfactory. However, biomass production was best mathematically described with the use of a double Monod model, which was expressed in terms of biomass, product accumulation, and nitrogen utilization. Product formation was successfully modelled with a modified form of the Luedeking and Piret model developed in this study.Instituto Nacional de Investigación y Tecnología Agraria | Ref. CAL01-045-C2-2Ministerio de Educación y Ciencia | Ref. MAT2005-05393-C03-03Ministerio de Educación y Ciencia | Ref. MAT2006-11662- C03-0

    Active Flexible Films for Food Packaging: A Review

    Get PDF
    This article belongs to the Special Issue Active and Intelligent Food Packaging Polymers.Active food packaging is a dynamic area where the scientific community and industry have been trying to find new strategies to produce innovative packaging that is economically viable and compatible with conventional production processes. The materials used to develop active packaging can be organized into scavenging and emitting materials, and based on organic and inorganic materials. However, the incorporation of these materials in polymer-based flexible packaging is not always straightforward. The challenges to be faced are mainly related to active agents' sensitivity to high temperatures or difficulties in dispersing them in the high viscosity polymer matrix. This review provides an overview of methodologies and processes used in the production of active packaging, particularly for the production of active flexible films at the industrial level. The direct incorporation of active agents in polymer films is presented, focusing on the processing conditions and their effect on the active agent, and final application of the packaging material. Moreover, the incorporation of active agents by coating technologies and supercritical impregnation are presented. Finally, the use of carriers to help the incorporation of active agents and several methodologies is discussed. This review aims to guide academic and industrial researchers in the development of active flexible packaging, namely in the selection of the materials, methodologies, and process conditions.Conducted under the project “MobFood-Mobilizing scientific and technological knowledge in response to the challenges of the agri-food market” (POCI-01-0247-FEDER-024524), by “Mob Food” Consortium, and financed by European Regional Development Fund (ERDF), through the Incentive System to Research and Technological development, within the Portugal2020 Competi tiveness and Internationalization Operational Program. IPC researchers acknowledge also funding by National Funds through FCT-Portuguese Foundation for Science and Technology, References UIDB/05256/2020 and UIDP/05256/2020.info:eu-repo/semantics/publishedVersio

    Active flexible films for food packaging: a review

    Get PDF
    Active food packaging is a dynamic area where the scientific community and industry have been trying to find new strategies to produce innovative packaging that is economically viable and compatible with conventional production processes. The materials used to develop active packaging can be organized into scavenging and emitting materials, and based on organic and inorganic materials. However, the incorporation of these materials in polymer-based flexible packaging is not always straightforward. The challenges to be faced are mainly related to active agents’ sensitivity to high temperatures or difficulties in dispersing them in the high viscosity polymer matrix. This review provides an overview of methodologies and processes used in the production of active packaging, particularly for the production of active flexible films at the industrial level. The direct incorporation of active agents in polymer films is presented, focusing on the processing conditions and their effect on the active agent, and final application of the packaging material. Moreover, the incorporation of active agents by coating technologies and supercritical impregnation are presented. Finally, the use of carriers to help the incorporation of active agents and several methodologies is discussed. This review aims to guide academic and industrial researchers in the development of active flexible packaging, namely in the selection of the materials, methodologies, and process conditions.Financed by European Regional Development Fund (ERDF), through the Incentive System to Research and Technological development, within the Portugal2020 Competitiveness and Internationalization Operational Program. IPC researchers acknowledge also funding by National Funds through FCT-Portuguese Foundation for Science and Technology, References UIDB/05256/2020 and UIDP/05256/2020

    Development of active bio-based multilayer systems: encapsulation of cinnamaldehyde and their physicochemical characterization

    Get PDF
    [Excerpt] In this work, different multilayer structures, using a polyhydroxybutyrate-co-valerate film with a valerate content of 8% (PHBV8) as support, were developed aiming the development of active bio-based multilayer systems. An interlayer based on zein nanofibers with and without cinnamaldehyde were electrospun in the PHBV8 film and three multilayer systems were developed: 1) without an outer layer; 2) using a PHBV8 film as outer layer; and 3) using an alginate-based film as outer layer. Their physico-chemical properties were evaluated through: water vapour and oxygen permeabilities and colour measurements, Fourier Transform Infrared Spectroscopy (FTIR) and thermal analyses. Results showed that the presence of different outer layers affected the water vapour permeability and transparency of the multilayer films. (...

    Use of electrospinning to develop antimicrobial biodegradable multilayer systems: encapsulation of cinnamaldehyde and their physicochemical characterization

    Get PDF
    In this work, three active bio-based multilayer structures, using a polyhydroxybutyrate-co-valerate film with a valerate content of 8 % (PHBV8) as support, were developed. To this end, a zein interlayer with or without cinnamaldehyde (CNMA) was directly electrospun onto one side of the PHBV8 film and the following systems were developed: (1) without an outer layer; (2) using a PHBV8 film as outer layer; and (3) using an alginate-based film as outer layer. These multilayer structures were characterized in terms of water vapour and oxygen permeabilities, transparency, intermolecular arrangement and thermal properties. The antimicrobial activity of the active bio-based multilayer systems and the release of CNMA in a food simulant were also evaluated. Results showed that the presence of different outer layers reduced the transport properties and transparency of the multilayer films. The active bio-based multilayer systems showed antibacterial activity against Listeria monocytogenes being the multilayer structure prepared with CNMA and PHBV outer layers (PHBV + zein/CNMA + PHBV) the one that showed the greater antibacterial activity. The release of CNMA depended on the multilayer structures, where both Fick's and Case II transport-polymer relaxation explained the release of CNMA from the multilayer systems.Acknowledgments: Miguel A. Cerqueira (SFRH/BPD/72753/2010) andAnaI.Bourbon(SFRH/BD/73178/2010)arerecipientofafellowship from the Fundação para a Ciência e Tecnologia (FCT, POPH-QREN and FSE Portugal). J.L. Castro-Mayorga is supported by the Administrative Department of Science, Technology and Innovation (Colciencias) of Colombian Government. M. J. Fabra is a recipient of a Ramon y Cajal contract (RyC-2014-158) from the Spanish Ministry of Economy and Competitiveness. This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and of the Project RECI/BBB-EBI/ 0179/2012 (FCOMP-01-0124-FEDER-027462). The support of EU Cost Action MP1206 is gratefully acknowledged

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Valorization of Globe Artichoke (Cynara scolymus) agro-industrial discards, obtaining an extract with a selective effect on viability of cancer cell lines

    Get PDF
    Globe artichoke (Cynara scolymus L.) is considered one of the most significant sources of phenolic antioxidants in nature. However, more than 60% of its total volume is discarded for consumption purposes, making available an abundant, inexpensive and profitable source of natural antioxidants in the discarded fractions. Polyphenolic antioxidants from a South American variety of artichoke agro-industrial discards (external bracts and stems) were obtained by mild extraction processes. Best results were achieved at 40 °C, 75% of ethanol and 10 min of reaction, obtaining 2.16 g gallic acid equivalent (GAE)/100 g of total phenolic compounds (TPC) and 55,472.34 µmol Trolox equivalent (TE)/100 g of antioxidant capacity (oxygen radical absorbance capacity (ORAC)). High-performance liquid chromatography (HPLC) analyses determined that caffeoylquinic acids comprise up to 85% of the total polyphenolic content, and only around 5% are flavonoids. Inulin content in the artichokes residues was recovered (48.4% dry weight (dw)), resulting in an extract with 28% of inulin in addition to the aforementioned antioxidant capacity. The artichoke discard extract in a concentration of 500 mg/L produced a strong decrease in Caco-2 and MCF-7 cancer cell lines viability, whereas healthy fibroblasts maintained their viability when the extract was concentrated at 1500 mg/L. These results suggest that the artichoke extract presents a good anti-proliferative potential effect on Caco-2 and MCF-7 cells.Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) | Ref. R15F10006Biotechnologies to Valorise the regional food Biodiversity in Latin America (BiValBi) | Ref. FP7 IRSES 61149

    Evaluation of two bacteriocin-producing probiotic lactic acid bacteria as inoculants for controlling Listeria monocytogenes in grass and maize silages

    No full text
    This study evaluated the effectiveness as silage inoculants of two bacteriocin-producing lactic acid bacteria (LAB) with proven probiotic activity in post-weaned piglets, Lactococcus lactis CECT 539 and Pediococcus acidilactici NRRL B-5627, in combination with the ensiling strain Lactobacillus plantarum CECT 220. Four combinations of LAB were tested in grass and maize silages: L. plantarum (Lb), L. plantarum + L. lactis (LbL), L. plantarum + P. acidilactici (LbP), and the three species together (LbLP). Untreated silages and silages inoculated with commercial starters (L. plantarum + Lactobacillus buchneri + Enterococcus faecium) were prepared and used as controls. Since both bacteriocinogenic strains have shown antilisterial activity in vitro, this study also aimed to determinate their effectiveness for controlling Listeria monocytogenes in the silo. Therefore, silages were inoculated with the strain L. monocytogenes CECT 4032 (1.0 × 105 cfu/g), the evolution of which was monitored throughout fermentation using microbiological and DNA based methods. Each treatment was assayed in triplicate in lab-scale silos and sampled after 1, 2, 8, 16 and 30 days to extract DNA and determination of the pH, volume, organic acids (lactic, acetic, propionic and butyric), alcohols (ethanol and propane-1, 2-diol), water soluble reducing sugars (WSRS) and make LAB and L. monocytogenes counts. Our results showed that the silages treated with bacteriocin-producing LAB had a higher rate of pH decline (P < 0.01) and lactic acid production (P < 0.01). After 30 days of fermentation, we observed low acetic acid (P < 0.01) and ethanol (P < 0.01), lower LAB counts (P < 0.01) and higher (P < 0.01) residual sugar concentrations in the Lb, LbL, LbP and LbLP silages. No L. monocytogenes colonies were found during ensilage; however, its DNA was present, which suggests that the adverse silage conditions (pH, anaerobiosis) might favour a viable but non-culturable state in the cells. In both forages, all treatments showed the anticipated disappearance of L. monocytogenes, unlike the control. It can be concluded that the bacteriocinogenic LAB tested in this study can be used as silage inoculants for controlling L. monocytogenes in the silo and also in the rumen of cattle due to their reported tolerance to acid.Xunta de Galicia | Ref. 03MFU0
    corecore