8,846 research outputs found

    Understanding fragility in supercooled Lennard-Jones mixtures. II. Potential energy surface

    Full text link
    We numerically investigated the connection between isobaric fragility and the properties of high-order stationary points of the potential energy surface in different supercooled Lennard-Jones mixtures. The increase of effective activation energies upon supercooling appears to be driven by the increase of average potential energy barriers measured by the energy dependence of the fraction of unstable modes. Such an increase is sharper, the more fragile is the mixture. Correlations between fragility and other properties of high-order stationary points, including the vibrational density of states and the localization features of unstable modes, are also discussed.Comment: 13 pages, 13 figures, minor revisions, one figure adde

    Pairing correlations of cold fermionic gases at overflow from a narrow to a wide harmonic trap

    Full text link
    Within the context of Hartree-Fock-Bogoliubov theory, we study the behavior of superfluid Fermi systems when they pass from a small to a large container. Such systems can be now realized thanks to recent progress in experimental techniques. It will allow to better understand pairing properties at overflow and in general in rapidly varying external potentials

    Understanding fragility in supercooled Lennard-Jones mixtures. I. Locally preferred structures

    Full text link
    We reveal the existence of systematic variations of isobaric fragility in different supercooled Lennard-Jones binary mixtures by performing molecular dynamics simulations. The connection between fragility and local structures in the bulk is analyzed by means of a Voronoi construction. We find that clusters of particles belonging to locally preferred structures form slow, long-lived domains, whose spatial extension increases by decreasing temperature. As a general rule, a more rapid growth, upon supercooling, of such domains is associated to a more pronounced super-Arrhenius behavior, hence to a larger fragility.Comment: 14 pages, 14 figures, minor revisions, one figure adde

    Giant Monopole Resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions

    Full text link
    Background: Following the 2007 precise measurements of monopole strengths in tin isotopes, there has been a continuous theoretical effort to obtain a precise description of the experimental results. Up to now, there is no satisfactory explanation of why the tin nuclei appear to be significantly softer than 208Pb. Purpose: We determine the influence of finite-range and separable pairing interactions on monopole strength functions in semi-magic nuclei. Methods: We employ self-consistently the Quasiparticle Random Phase Approximation on top of spherical Hartree-Fock-Bogolyubov solutions. We use the Arnoldi method to solve the linear-response problem with pairing. Results: We found that the difference between centroids of Giant Monopole Resonances measured in lead and tin (about 1 MeV) always turns out to be overestimated by about 100%. We also found that the volume incompressibility, obtained by adjusting the liquid-drop expression to microscopic results, is significantly larger than the infinite-matter incompressibility. Conclusions: The zero-range and separable pairing forces cannot induce modifications of monopole strength functions in tin to match experimental data.Comment: 11 RevTeX pages, 16 figures, 1 table, extended versio

    Collective vibrational states with fast iterative QRPA method

    Full text link
    An iterative method we previously proposed to compute nuclear strength functions is developed to allow it to accurately calculate properties of individual nuclear states. The approach is based on the quasi-particle-random-phase approximation (QRPA) and uses an iterative non-hermitian Arnoldi diagonalization method where the QRPA matrix does not have to be explicitly calculated and stored. The method gives substantial advantages over conventional QRPA calculations with regards to the computational cost. The method is used to calculate excitation energies and decay rates of the lowest lying 2+ and 3- states in Pb, Sn, Ni and Ca isotopes using three different Skyrme interactions and a separable gaussian pairing force.Comment: 10 pages, 11 figure

    Jamming phase diagram for frictional particles

    Full text link
    The non-equilibrium transition from a fluid-like state to a disordered solid-like state, known as the jamming transition, occurs in a wide variety of physical systems, such as colloidal suspensions and molecular fluids, when the temperature is lowered or the density increased. Shear stress, as temperature, favors the fluid-like state, and must be also considered to define the system 'jamming phase diagram' [1-4]. Frictionless athermal systems [1], for instance, can be described by the zero temperature plane of the jamming diagram in the temperature, density, stress space. Here we consider the jamming of athermal frictional systems [8-13] such as granular materials, which are important to a number of applications from geophysics to industry. At constant volume and applied shear stress[1, 2], we show that while in absence of friction a system is either fluid-like or jammed, in the presence of friction a new region in the density shear-stress plane appears, where new dynamical regimes are found. In this region a system may slip, or even flow with a steady velocity for a long time in response to an applied stress, but then eventually jams. Jamming in non-thermal frictional systems is described here by a phase diagram in the density, shear-stress and friction space

    Near-infrared spectroscopy study of tourniquet-induced forearm ischaemia in patients with coronary artery disease

    Get PDF
    Near-Infrared Spectroscopy (NIR) can be employed to monitor local changes in haemodynamics and oxygenation of human tissues. A preliminary study has been performed in order to evaluate the NIRS transmittance response to induced forearm ischaemia in patients with coronary artery disease (CAD). The population consists in 40 patients with cardiovascular risk factors and angiographically documented CAD, compared to a group of 13 normal subjects. By inflating and subsequently deflating a cuff placed around the patient arm, an ischaemia has been induced and released, and the patients have been observed until recovery of the basal conditions. A custom LAIRS spectrometer (IRIS) has been used to collect the backscattered light intensities from the patient forearm throughout the ischaemic and the recovery phase. The time dependence of the near-infrared transmittance on the control group is consistent with the available literature. On the contrary, the magnitude and dynamics of the NIRS signal on the CAD patients show deviations from the documented normal behavior, which can be tentatively attributed to abnormal vessel stiffness. These preliminary results, while validating the performance of the IRIS spectrometer, are strongly conducive towards the applicability of the NIRS technique to ischaemia analysis and to endothelial dysfunction characterization in CAD patients with cardiovascular risk factors.Publisher PD

    Finite-size effects and collective vibrations in the inner crust of neutron stars

    Full text link
    We study the linear response of the inner crust of neutron stars within the Random Phase Approximation, employing a Skyrme-type interaction as effective interaction. We adopt the Wigner-Seitz approximation, and consider a single unit cell of the Coulomb lattice which constitutes the inner crust, with a nucleus at its center, surrounded by a sea of free neutrons. With the use of an appropriate operator, it is possible to analyze in detail the properties of the vibrations of the surface of the nucleus and their interaction with the modes of the sea of free neutrons, and to investigate the role of shell effects and of resonant states

    Characterization of two new alleles at the goat CSN1S2 locus.

    Get PDF
    Two novel alleles at the goat CSN1S2 locus have been identified: CSN1S2(F) and CSN1S2(D). Sequence analyses revealed that the CSN1S2(F) allele is characterized by a G --> A transition at the 13th nucleotide in exon 3 changing the seventh amino acid of the mature protein from Val to Ile. The CSN1S2(D) allele, apparently associated with a decreased synthesis of alpha s2-casein, is characterized by a 106-bp deletion, involving the last 11 bp of the exon 11 and the first 95 bp of the following intron. Methods (PCR-RFLP and PCR) for identification of carriers of these alleles have been developed
    • …
    corecore