7,277 research outputs found
Collective vibrational states with fast iterative QRPA method
An iterative method we previously proposed to compute nuclear strength
functions is developed to allow it to accurately calculate properties of
individual nuclear states. The approach is based on the
quasi-particle-random-phase approximation (QRPA) and uses an iterative
non-hermitian Arnoldi diagonalization method where the QRPA matrix does not
have to be explicitly calculated and stored. The method gives substantial
advantages over conventional QRPA calculations with regards to the
computational cost. The method is used to calculate excitation energies and
decay rates of the lowest lying 2+ and 3- states in Pb, Sn, Ni and Ca isotopes
using three different Skyrme interactions and a separable gaussian pairing
force.Comment: 10 pages, 11 figure
Reforming the brazilian agricultural research system.
bitstream/item/158310/1/Reforming-the-brazilian.pd
Nuclear energy density optimization: Shell structure
Nuclear density functional theory is the only microscopical theory that can
be applied throughout the entire nuclear landscape. Its key ingredient is the
energy density functional. In this work, we propose a new parameterization
UNEDF2 of the Skyrme energy density functional. The functional optimization is
carried out using the POUNDerS optimization algorithm within the framework of
the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous
parameterization UNEDF1, restrictions on the tensor term of the energy density
have been lifted, yielding a very general form of the energy density functional
up to second order in derivatives of the one-body density matrix. In order to
impose constraints on all the parameters of the functional, selected data on
single-particle splittings in spherical doubly-magic nuclei have been included
into the experimental dataset. The agreement with both bulk and spectroscopic
nuclear properties achieved by the resulting UNEDF2 parameterization is
comparable with UNEDF1. While there is a small improvement on single-particle
spectra and binding energies of closed shell nuclei, the reproduction of
fission barriers and fission isomer excitation energies has degraded. As
compared to previous UNEDF parameterizations, the parameter confidence interval
for UNEDF2 is narrower. In particular, our results overlap well with those
obtained in previous systematic studies of the spin-orbit and tensor terms.
UNEDF2 can be viewed as an all-around Skyrme EDF that performs reasonably well
for both global nuclear properties and shell structure. However, after adding
new data aiming to better constrain the nuclear functional, its quality has
improved only marginally. These results suggest that the standard Skyrme energy
density has reached its limits and significant changes to the form of the
functional are needed.Comment: 18 pages, 13 figures, 12 tables; resubmitted for publication to Phys.
Rev. C after second review by refere
A numerical study of a binary Yukawa model in regimes characteristic of globular proteins in solutions
The main goal of this paper is to assess the limits of validity, in the
regime of low concentration and strong Coulomb coupling (high molecular
charges), for a simple perturbative approximation to the radial distribution
functions (RDF), based upon a low-density expansion of the potential of mean
force and proposed to describe protein-protein interactions in a recent
Small-Angle-Scattering (SAS) experimental study. A highly simplified Yukawa
(screened Coulomb) model of monomers and dimers of a charged globular protein
(-lactoglobulin) in solution is considered. We test the accuracy of the
RDF approximation, as a necessary complementary part of the previous
experimental investigation, by comparison with the fluid structure predicted by
approximate integral equations and exact Monte Carlo (MC) simulations. In the
MC calculations, an Ewald construction for Yukawa potentials has been used to
take into account the long-range part of the interactions in the weakly
screened cases. Our results confirm that the perturbative first-order
approximation is valid for this system even at strong Coulomb coupling,
provided that the screening is not too weak (i.e., for Debye length smaller
than monomer radius). A comparison of the MC results with integral equation
calculations shows that both the hypernetted-chain (HNC) and the Percus-Yevick
(PY) closures have a satisfactory behavior under these regimes, with the HNC
being superior throughout. The relevance of our findings for interpreting SAS
results is also discussed.Comment: Physical Review E, in press (2005
Indeterminacy of Spatiotemporal Cardiac Alternans
Cardiac alternans, a beat-to-beat alternation in action potential duration
(at the cellular level) or in ECG morphology (at the whole heart level), is a
marker of ventricular fibrillation, a fatal heart rhythm that kills hundreds of
thousands of people in the US each year. Investigating cardiac alternans may
lead to a better understanding of the mechanisms of cardiac arrhythmias and
eventually better algorithms for the prediction and prevention of such dreadful
diseases. In paced cardiac tissue, alternans develops under increasingly
shorter pacing period. Existing experimental and theoretical studies adopt the
assumption that alternans in homogeneous cardiac tissue is exclusively
determined by the pacing period. In contrast, we find that, when calcium-driven
alternans develops in cardiac fibers, it may take different spatiotemporal
patterns depending on the pacing history. Because there coexist multiple
alternans solutions for a given pacing period, the alternans pattern on a fiber
becomes unpredictable. Using numerical simulation and theoretical analysis, we
show that the coexistence of multiple alternans patterns is induced by the
interaction between electrotonic coupling and an instability in calcium
cycling.Comment: 20 pages, 10 figures, to be published in Phys. Rev.
Coletânea de trabalhos sobre a Embrapa.
POLITICA AGRICOLA DO BRASIL E HIPOTESE DA INOVAÇAO INDUZIDA; O PAPEL DA TECNOLOGIA NA EXPANSAO AGRÍCOLA; REFORMING THE BRAZILIAN AGRICULTURAL FIESEARCH SYSTEM; NOVA ABORDAGEM PARA A PESQUISA AGRÍCOLA.bitstream/item/159154/1/Coletanea-de-trabalhos-1980-.pdfNa publicação: Eliseu Alves
O papel da tecnologia na expansĂŁo agrĂcola.
Uma das ideias centrais na literatura contemporânea sobre desenvolvimento agrĂcola Ă© a de que a mudança tecnolĂłgica Ă© um processo induzido. Isso significa que as inovações tecnolĂłgicas tendem a surgir como resposta aos custos de fatores que se elevam.bitstream/item/159034/1/O-papel-da-tecnologia.pdfNa publicação: Eliseu Alves
- …