9 research outputs found

    Linestrength ratio spectroscopy as a new primary thermometer for redefined Kelvin dissemination

    Get PDF
    Experimental methods for primary thermometry, after Kelvin unit redefinition on May 2019, become based on a known value of the Boltzmann constant rather than by measuring temperature with respect to a reference point. In this frame, we propose Linestrength Ratio Thermometry (LRT) as a candidate method for primary thermometry in the 9-700 K temperature range. Temperature accuracies at the ppm level are prospected for LRT applied to optical transitions of the CO molecule in the range 80-700 K and of a rare-earth-doped crystal in the 9-100 K one. Future implementations of this technique can contribute to measure the calibration- discrepancies in the ITS-90 metrological scale of thermodynamic temperature which can have a measurable impact in applications ranging from fundamental-physics to meteorology and climatology

    Retrieval of phase relation and emission profile of quantum cascade laser frequency combs

    Full text link
    The major development recently undergone by quantum cascade lasers has effectively extended frequency comb emission to longer-wavelength spectral regions, i.e. the mid and far infrared. Unlike classical pulsed frequency combs, their mode-locking mechanism relies on four-wave mixing nonlinear processes, with a temporal intensity profile different from conventional short-pulses trains. Measuring the absolute phase pattern of the modes in these combs enables a thorough characterization of the onset of mode-locking in absence of short-pulses emission, as well as of the coherence properties. Here, by combining dual-comb multi-heterodyne detection with Fourier-transform analysis, we show how to simultaneously acquire and monitor over a wide range of timescales the phase pattern of a generic frequency comb. The technique is applied to characterize a mid-infrared and a terahertz quantum cascade laser frequency comb, conclusively proving the high degree of coherence and the remarkable long-term stability of these sources. Moreover, the technique allows also the reconstruction of electric field, intensity profile and instantaneous frequency of the emission.Comment: 20 pages. Submitted to Nature Photonic

    Efficient frequency doubling at 399 nm

    Get PDF
    We describe a reliable, high-power, and narrow-linewidth laser source at 399 nm, which is useful for cooling and trapping of ytterbium atoms. A continuous-wave titanium-sapphire laser at 798 nm is frequency doubled using a lithium triborate crystal in an enhancement cavity. Up to 1.0 W of light at 399 nm has been obtained from 1.3 W of infrared light, with an efficiency of 80%

    Medidor de longitudes de onda para laseres continuos. Medida de nuevos patrones para espectroscopia laser usando 130Te2

    No full text
    Centro de Informacion y Documentacion Cientifica (CINDOC). C/Joaquin Costa, 22. 28002 Madrid. SPAIN / CINDOC - Centro de Informaciòn y Documentaciòn CientìficaSIGLEESSpai

    Medidor de longitudes de onda para láseres continuos. Medida de nuevos patrones para espectroscopía láser usando 130Te2

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de Materiales. Fecha de lectura: 22-03-199

    Direct Comb Vernier Spectroscopy for Fractional Isotopic Ratio Determinations

    No full text
    Accurate isotopic composition analysis of the greenhouse-gasses emitted in the atmosphere is an important step to mitigate global climate warnings. Optical frequency comb–based spectroscopic techniques have shown ideal performance to accomplish the simultaneous monitoring of the different isotope substituted species of such gases. The capabilities of one such technique, namely, direct comb Vernier spectroscopy, to determine the fractional isotopic ratio composition are discussed. This technique combines interferometric filtering of the comb source in a Fabry–Perot that contains the sample gas, with a high resolution dispersion spectrometer to resolve the spectral content of each interacting frequency inside of the Fabry–Perot. Following this methodology, simultaneous spectra of ro-vibrational transitions of 12C16O2 and 13C16O2 molecules are recorded and analyzed with an accurate fitting procedure. Fractional isotopic ratio 13C/12C at 3% of precision is measured for a sample of CO2 gas, showing the potentialities of the technique for all isotopic-related applications of this important pollutant

    Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    No full text
    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line
    corecore