122 research outputs found
On the product of two π-decomposable groups
[EN] The aim of this paper is to prove the following result: let Ï€ be a set of odd primes. If the finite group G = AB is a product of two Ï€-decomposable subgroups A = OÏ€(A)×OÏ€ (A) and B = OÏ€(B)×OÏ€ (B), then OÏ€(A)OÏ€(B)=OÏ€(B)OÏ€(A) and this is a Hall Ï€-subgroup of G.The second and third authors were supported by Proyecto MTM2010-19938-C03-02, Ministerio de Economia y Competitividad, Spain. The first author would like to thank the Universitat de Valencia and the Universitat Politecnica de Valencia for their warm hospitality during the preparation of this paper and the RFBR Project 13-01-00469 for its support. The authors are also grateful to A. S. Kondratiev for helpful comments and suggestions during his visit to Valencia.Kazarin, LS.; MartÃnez Pastor, A.; Perez Ramos, MD. (2015). On the product of two Ï€-decomposable groups. Revista Matemática Iberoamericana. 31(1):51-68. https://doi.org/10.4171/rmi/826S516831
Estimación por intervalos
Presentación de estimación por intervalos y cálculo del tamaño muestral en poblaciones infinitasParcialmente financiado por el PIE13-02
Cuestionario de estimación por intervalos
Parcialmente financiado por el PIE13-02
Cuestionario de estimación puntual
Parcialmente financiado por el PIE13-02
Cuestionario de distribuciones en el muestreo
Parcialmente financiado por el PIE13-02
On conditional permutability and factorized groups
Two subgroups and of a group are said to be totally completely conditionally permutable (tcc-permutable) if permutes with for some , for all and all . In this paper, we study finite products of tcc-permutable subgroups, focussing mainly on structural properties of such products. As an application, new achievements in the context of formation theory are obtained.The third and fourth authors are supported by Proyecto MTM2010-19938-C03-02, Ministerio de Economia y Competitividad, Spain. The authors wish to thank Anatoly Kondratiev, and also Lev Kazarin, for many helpful ideas and comments to prove the main results of the paper.Arroyo Jordá, M.; Arroyo Jordá, P.; MartÃnez Pastor, A.; Perez Ramos, MD. (2014). On conditional permutability and factorized groups. Annali di Matematica Pura ed Applicata. 193(4):1123-1138. https://doi.org/10.1007/s10231-012-0319-1S112311381934Arroyo-Jordá, M., Arroyo-Jordá, P., MartÃnez-Pastor, A., Pérez-Ramos, M.D.: On finite products of groups and supersolubility. J. Algebra 323, 2922–2934 (2010)Arroyo-Jordá, M., Arroyo-Jordá, P., MartÃnez-Pastor, A., Pérez-Ramos, M.D.: A survey on some permutability properties on subgroups of finite groups. In: Proceedings of the Meeting on Group Theory and its Applications, Zaragoza, 10–11 June 2011, pp. 1–11. Biblioteca de la Revista Matemática Iberoamericana, Madrid (2012)Arroyo-Jordá, M., Arroyo-Jordá, P., Pérez-Ramos, M.D.: On conditional permutability and saturated formations. Proc. Edinb. Math. Soc. 54, 309–319 (2011)Asaad, M., Shaalan, A.: On the supersolvability of finite groups. Arch. Math. 53, 318–326 (1989)Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups. De Gruyter, Berlin (2010)Ballester-Bolinches, A., Ezquerro, L.M.: Classes of Finite Groups. Springer, Dordrecht (2006)Ballester-Bolinches, A., Pedraza-Aguilera, M.C., Pérez-Ramos, M.D.: On finite products of totally permutable groups. Bull. Aust. Math. Soc. 53, 441–445 (1996)Ballester-Bolinches, A., Pedraza-Aguilera, M.C., Pérez-Ramos, M.D.: Finite groups which are products of pairwise totally permutable subgroups. Proc. Edinb. Math. Soc. 41, 567–572 (1998)Ballester-Bolinches, A., Pedraza-Aguilera, M.C., Pérez-Ramos, M.D. : Totally and mutually permutable products of finite groups. In: Groups St. Andrews 1997 in Bath I. London Math. Soc. Lecture Note Series 260, pp. 65–68. Cambridge University Press, Cambridge (1999)Ballester-Bolinches, A., Pérez-Ramos, M.D.: A question of R. Maier concerning formations. J. Algebra 82, 738–747 (1996)Beidleman, J., Heineken, H.: Mutually permutable subgroups and group classes. Arch. Math. 85, 18–30 (2005)Beidleman, J., Heineken, H.: Totally permutable torsion subgroups. J. Group Theory 2, 377–392 (1999)Burgoyne, N., Griess, R.: Maximal subgroups and automorphisms of Chevalley groups. Pac. J. Math. 71, 365–403 (1977)Carter, R.: Simple Groups of Lie Type. Wiley, London (1972)Carocca, A.: A note on the product of -subgroups in a finite group. Proc. Edinb. Math. Soc. 39, 37–42 (1996)Carocca, A., Maier, R.: Theorems of Kegel–Wielandt type. In: Groups St. Andrews 1997 in Bath I. London Mathematical Society Lecture Note Series 260, pp. 195–201. Cambridge University Press, Cambridge (1999)Casolo, C.: A criterion for subnormality and Wielandt complexes in finite groups. J. Algebra 169, 605–624 (1994)Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Clarendon Press, Oxford (1985). http://brauer.maths.qmul.ac.uk/Atlas/v3/Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter, Berlin (1992)Gorenstein, D., Lyons, R.: The local structure of finite groups of characteristic 2 type. Memoirs of the American Mathematical Society 276, American Mathematical Society, Providence (1983)Guo, W., Shum, K.P., Skiba, A.N.: Criterions of supersolubility for products of supersoluble groups. Publ. Math. Debrecen 68(3–4), 433–449 (2006)Hauck, P., MartÃnez-Pastor, A., Pérez-Ramos, M.D.: Fitting classes and products of totally permutable groups. J. Algebra 252, 114–126 (2002)Hauck, P., MartÃnez-Pastor, A., Pérez-Ramos, M.D.: Products of pairwise totally permutable groups. Proc. Edinb. Math. Soc. 46, 147–157 (2003)Hauck, P., MartÃnez-Pastor, A., Pérez-Ramos, M.D.: Injectors and radicals in products of totally permutable groups. Commun. Algebra 31(12), 6135–6147 (2003)Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967)Kleidman, P.B.: The maximal subgroups of the Steinberg triality groups and their automorphism groups. J. Algebra 115, 182–199 (1988)Kleidman, P.B.: The maximal subgroups of the Chevalley groups with q odd, the Ree groups , and their automorphism groups. J. Algebra 117, 30–71 (1988)Kleidman, P.B., Liebeck, M.W.: The Subgroup Structure of the Finite Classical Groups. Cambridge University Press, Cambridge (1990)Lennox, J.C., Stonehewer, S.E.: Subnormal Subgroups of Groups. Clarendon Press, Oxford (1987)Liebeck, M.W., Saxl, J., Seitz, G.M.: Subgroups of maximal rank in finite exceptional groups of Lie type. Proc. Lond. Math. Soc. 3(65), 297–325 (1992)Liu, X., Guo, W., Shum, K.P.: Products of finite supersoluble groups. Algebra Colloq. 16(2), 333–340 (2009)Liu, X., Li, B., Yi, X.: Some criteria for supersolubility in products of finite groups. Front. Math. China 3(1), 79–86 (2008)Maier, R.: A completeness property of certain formations. Bull. Lond. Math. Soc. 24, 540–544 (1992)Wilson, R.A.: The Finite Simple Groups. Springer, London (2009
Products of N-connected groups
[EN] Two subgroups H and K of a finite group G are said to be
N -connected if the subgroup generated by x and y is a nilpotent group,
for every pair of elements x in H and y in K. This paper is devoted to
the study of pairwise N -connected and permutable products of finitely
many groups, in the framework of formation and Fitting class theory.The second and third authors have been supported by Proyecto BMF2001-1667-C03-03, Ministerio de Ciencia y Tecnolog´ıa and FEDER, SpainHauck, P.; MartÃnez Pastor, A.; Perez Ramos, MD. (2003). Products of N-connected groups. Illinois Journal of Mathematics. 47(4):1033-1045. http://hdl.handle.net/10251/51893S1033104547
Identification of oxidative stress related proteins as biomarkers for lung cancer and chronic obstructive pulmonary disease in bronchoalveolar lavage
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) commonly coexist in smokers, and the presence of COPD increases the risk of developing LC. Cigarette smoke causes oxidative stress and an inflammatory response in lung cells, which in turn may be involved in COPD and lung cancer development. The aim of this study was to identify differential proteomic profiles related to oxidative stress response that were potentially involved in these two pathological entities. Protein content was assessed in the bronchoalveolar lavage (BAL) of 60 patients classified in four groups: COPD, COPD and LC, LC, and control (neither COPD nor LC). Proteins were separated into spots by two dimensional polyacrylamide gel electrophoresis (2D-PAGE) and examined by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF). A total of 16 oxidative stress regulatory proteins were differentially expressed in BAL samples from LC and/or COPD patients as compared with the control group. A distinct proteomic reactive oxygen species (ROS) protein signature emerged that characterized lung cancer and COPD. In conclusion, our findings highlight the role of the oxidative stress response proteins in the pathogenic pathways of both diseases, and provide new candidate biomarkers and predictive tools for LC and COPD diagnosis
Estimación puntual
Presentación de las propiedades de los estimadoresParcialmente financiado por el PIE13-02
Distribuciones en el muestreo. Introducción a la inferencia estadÃstica.
Presentación de los conceptos introductorios a la inferencia estadÃsticaParcialmente financiado por el PIE13-02
- …