58 research outputs found

    Rapid whole genome optical mapping of Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Immune evasion and drug resistance in malaria have been linked to chromosomal recombination and gene copy number variation (CNV). These events are ideally studied using comparative genomic analyses; however in malaria these analyses are not as common or thorough as in other infectious diseases, partly due to the difficulty in sequencing and assembling complete genome drafts. Recently, whole genome optical mapping has gained wide use in support of genomic sequence assembly and comparison. Here, a rapid technique for producing whole genome optical maps of <it>Plasmodium falciparum </it>is described and the results of mapping four genomes are presented.</p> <p>Methods</p> <p>Four laboratory strains of <it>P. falciparum </it>were analysed using the Argus™ optical mapping system to produce ordered restriction fragment maps of all 14 chromosomes in each genome. <it>Plasmodium falciparum </it>DNA was isolated directly from blood culture, visualized using the Argus™ system and assembled in a manner analogous to next generation sequence assembly into maps (AssemblyViewer™, OpGen Inc.<sup>®</sup>). Full coverage maps were generated for <it>P. falciparum </it>strains 3D7, FVO, D6 and C235. A reference <it>P. falciparum in silico </it>map was created by the digestion of the genomic sequence of <it>P. falciparum </it>with the restriction enzyme AflII, for comparisons to genomic optical maps. Maps were then compared using the MapSolver™ software.</p> <p>Results</p> <p>Genomic variation was observed among the mapped strains, as well as between the map of the reference strain and the map derived from the putative sequence of that same strain. Duplications, deletions, insertions, inversions and misassemblies of sizes ranging from 3,500 base pairs up to 78,000 base pairs were observed. Many genomic events occurred in areas of known repetitive sequence or high copy number genes, including <it>var </it>gene clusters and <it>rifin </it>complexes.</p> <p>Conclusions</p> <p>This technique for optical mapping of multiple malaria genomes allows for whole genome comparison of multiple strains and can assist in identifying genetic variation and sequence contig assembly. New protocols and technology allowed us to produce high quality contigs spanning four <it>P. falciparum </it>genomes in six weeks for less than $1,000.00 per genome. This relatively low cost and quick turnaround makes the technique valuable compared to other genomic sequencing technologies for studying genetic variation in malaria.</p

    High frequency of BRCA1, but not CHEK2 or NBS1 (NBN), founder mutations in Russian ovarian cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A significant portion of ovarian cancer (OC) cases is caused by germ-line mutations in BRCA1 or BRCA2 genes. BRCA testing is cheap in populations with founder effect and therefore recommended for all patients with OC diagnosis. Recurrent mutations constitute the vast majority of BRCA defects in Russia, however their impact in OC morbidity has not been yet systematically studied. Furthermore, Russian population is characterized by a relatively high frequency of CHEK2 and NBS1 (NBN) heterozygotes, but it remains unclear whether these two genes contribute to the OC risk.</p> <p>Methods</p> <p>The study included 354 OC patients from 2 distinct, geographically remote regions (290 from North-Western Russia (St.-Petersburg) and 64 from the south of the country (Krasnodar)). DNA samples were tested by allele-specific PCR for the presence of 8 founder mutations (BRCA1 5382insC, BRCA1 4153delA, BRCA1 185delAG, BRCA1 300T>G, BRCA2 6174delT, CHEK2 1100delC, CHEK2 IVS2+1G>A, NBS1 657del5). In addition, literature data on the occurrence of BRCA1, BRCA2, CHEK2 and NBS1 mutations in non-selected ovarian cancer patients were reviewed.</p> <p>Results</p> <p>BRCA1 5382insC allele was detected in 28/290 (9.7%) OC cases from the North-West and 11/64 (17.2%) OC patients from the South of Russia. In addition, 4 BRCA1 185delAG, 2 BRCA1 4153delA, 1 BRCA2 6174delT, 2 CHEK2 1100delC and 1 NBS1 657del5 mutation were detected. 1 patient from Krasnodar was heterozygous for both BRCA1 5382insC and NBS1 657del5 variants.</p> <p>Conclusion</p> <p>Founder BRCA1 mutations, especially BRCA1 5382insC variant, are responsible for substantial share of OC morbidity in Russia, therefore DNA testing has to be considered for every OC patient of Russian origin. Taken together with literature data, this study does not support the contribution of CHEK2 in OC risk, while the role of NBS1 heterozygosity may require further clarification.</p

    Immune mechanisms in malaria: new insights in vaccine development.

    No full text
    Early data emerging from the first phase 3 trial of a malaria vaccine are raising hopes that a licensed vaccine will soon be available for use in endemic countries, but given the relatively low efficacy of the vaccine, this needs to be seen as a major step forward on the road to a malaria vaccine rather than as arrival at the final destination. The focus for vaccine developers now moves to the next generation of malaria vaccines, but it is not yet clear what characteristics these new vaccines should have or how they can be evaluated. Here we briefly review the epidemiological and immunological requirements for malaria vaccines and the recent history of malaria vaccine development and then put forward a manifesto for future research in this area. We argue that rational design of more effective malaria vaccines will be accelerated by a better understanding of the immune effector mechanisms involved in parasite regulation, control and elimination

    Sequestration and Tissue Accumulation of Human Malaria Parasites: Can We Learn Anything from Rodent Models of Malaria?

    Get PDF
    The sequestration of Plasmodium falciparum–infected red blood cells (irbcs) in the microvasculature of organs is associated with severe disease; correspondingly, the molecular basis of irbc adherence is an active area of study. In contrast to P. falciparum, much less is known about sequestration in other Plasmodium parasites, including those species that are used as models to study severe malaria. Here, we review the cytoadherence properties of irbcs of the rodent parasite Plasmodium berghei ANKA, where schizonts demonstrate a clear sequestration phenotype. Real-time in vivo imaging of transgenic P. berghei parasites in rodents has revealed a CD36-dependent sequestration in lungs and adipose tissue. In the absence of direct orthologs of the P. falciparum proteins that mediate binding to human CD36, the P. berghei proteins and/or mechanisms of rodent CD36 binding are as yet unknown. In addition to CD36-dependent schizont sequestration, irbcs accumulate during severe disease in different tissues, including the brain. The role of sequestration is discussed in the context of disease as are the general (dis)similarities of P. berghei and P. falciparum sequestration

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Variants within the MMP3 gene and patellar tendon properties in vivo in an asymptomatic population

    Get PDF
    Background/aim Gene variants encoding for proteins involved in homeostatic processes within tendons may influence its material and mechanical properties in humans. The purpose of this study was to examine the association between three polymorphisms of the MMP3 gene, (rs679620, rs591058 and rs650108) and patellar tendon dimensional and mechanical properties in vivo. Methods One hundred and sixty, healthy, recreationally-active, Caucasian men and women, aged 18–39 were recruited. MMP3 genotype determined using real-time PCR was used to select 84 participants showing greatest genetic differences to complete phenotype measurements. Patellar tendon dimensions (volume) and functional (elastic modulus) properties were assessed in vivo using geometric modelling, isokinetic dynamometry, electromyography and ultrasonography. Results No significant associations were evident between the completely linked MMP3 rs591058 and rs679620 gene variants, and closely linked rs650108 gene variant, and either patellar tendon volume (rs679620, P = 0.845; rs650108, P = 0.984) or elastic modulus (rs679620, P = 0.226; rs650108, P = 0.088). Similarly, there were no associations with the Z-score that combined those dimension and functional properties into a composite value (rs679620, P = 0.654; rs650108, P = 0.390). Similarly, no association was evident when comparing individuals with/without the rarer alleles (P > 0.01 in all cases). Conclusions Patellar tendon properties do not seem to be influenced by the MMP3 gene variants measured. Although these MMP3 gene variants have previously been associated with the risk of tendon pathology, that association is unlikely to be mediated via underlying tendon dimensional and functional properties
    • …
    corecore