334 research outputs found

    A Landau fluid model for warm collisionless plasmas

    Full text link
    A Landau fluid model for a collisionless electron-proton magnetized plasma, that accurately reproduces the dispersion relation and the Landau damping rate of all the magnetohydrodynamic waves, is presented. It is obtained by an accurate closure of the hydrodynamic hierarchy at the level of the fourth order moments, based on linear kinetic theory. It retains non-gyrotropic corrections to the pressure and heat flux tensors up to the second order in the ratio between the considered frequencies and the ion cyclotron frequency.Comment: to appear in Phys. Plasma

    Highly Compressible MHD Turbulence and Gravitational Collapse

    Full text link
    We investigate the properties of highly compressible turbulence and its ability to produce self-gravitating structures. The compressibility is parameterized by an effective polytropic exponent gama-eff. In the limit of small gama-eff, the density jump at shocks is shown to be of the order of e^{M^2}, and the production of vorticity by the nonlinear terms appears to be negligible. In the presence of self-gravity, we suggest that turbulence can produce bound structures for gama-eff < 2(1-1/n), where 'n' is the typical dimensionality of the turbulent compressions. We show, by means of numerical simulations, that, for sufficiently small gama-eff, small-scale turbulent density fluctuations eventually collapse even though the medium is globally stable. This result is preserved in the presence of a magnetic field for supercritical mass-to-flux ratios.Comment: 4 pages, 3 postscript figures. Latex, uses aipproc.sty Contribution to the Conference Proc. of the 7th Annual Astrophysics Conference in Maryland, STAR FORMATION, NEAR AND FAR, eds. Stephen S. Holt and Lee G. Mund

    Electron-scale reduced fluid models with gyroviscous effects

    Full text link
    Reduced fluid models for collisionless plasmas including electron inertia and finite Larmor radius corrections are derived for scales ranging from the ion to the electron gyroradii. Based either on pressure balance or on the incompressibility of the electron fluid, they respectively capture kinetic Alfv\'en waves (KAWs) or whistler waves (WWs), and can provide suitable tools for reconnection and turbulence studies. Both isothermal regimes and Landau fluid closures permitting anisotropic pressure fluctuations are considered. For small values of the electron beta parameter βe\beta_e, a perturbative computation of the gyroviscous force valid at scales comparable to the electron inertial length is performed at order O(βe)O(\beta_e), which requires second-order contributions in a scale expansion. Comparisons with kinetic theory are performed in the linear regime. The spectrum of transverse magnetic fluctuations for strong and weak turbulence energy cascades is also phenomenologically predicted for both types of waves. In the case of moderate ion to electron temperature ratio, a new regime of KAW turbulence at scales smaller than the electron inertial length is obtained, where the magnetic energy spectrum decays like k⊥−13/3k_\perp^{-13/3}, thus faster than the k⊥−11/3k_\perp^{-11/3} spectrum of WW turbulence.Comment: 29 pages, 4 figure

    A Turbulent Model for the Interstellar Medium. II. Magnetic Fields and Rotation

    Get PDF
    We present results from two-dimensional numerical simulations of a supersonic turbulent flow in the plane of the galactic disk, incorporating shear, thresholded and discrete star formation (SF), self-gravity, rotation and magnetic fields. A test of the model in the linear regime supports the results of the linear theory of Elmegreen (1991). In the fully nonlinear turbulent regime, while some results of the linear theory persist, new effects also emerge. Some exclusively nonlinear effects are: a) Even though there is no dynamo in 2D, the simulations are able to maintain or increase their net magnetic energy in the presence of a seed uniform azimuthal component. b) A well-defined power-law magnetic spectrum and an inverse magnetic cascade are observed in the simulations, indicating full MHD turbulence. Thus, magnetic field energy is generated in regions of SF and cascades up to the largest scales. c) The field has a slight but noticeable tendency to be aligned with density features. d) The magnetic field prevents HII regions from expanding freely, as in the recent results of Slavin \& Cox (1993). e) A tendency to exhibit {\it less} filamentary structures at stronger values of the uniform component of the magnetic field is present in several magnetic runs. f) For fiducial values of the parameters, the flow in general appears to be in rough equipartition between magnetic and kinetic energy. There is no clear domination of either the magnetic or the inertial forces. g) A median value of the magnetic field strength within clouds is ∼12μ\sim 12\muG, while for the intercloud medium a value of ∼3μ\sim 3\muG is found. Maximum contrasts of up to a factor of ∼10\sim 10 are observed.Comment: Plain TeX file, 25 pages. Gzipped, tarred set of Tex file plus 17 figures and 3 tables (Postscript) available at ftp://kepler.astroscu.unam.mx/incoming/enro/papers/mhdgturb.tar.g

    Nonlinear mirror modes in the presence of hot electrons

    Full text link
    A non-perturbative calculation of the gyrotropic pressures associated with large-scale mirror modes is performed, taking into account a finite, possibly anisotropic electron temperature. In the small-amplitude limit, this leads to an extension of an asymptotic model previously derived for cold electrons. A model equation for the profile of subcritical finite-amplitude large-scale structures is also presented

    Influence of the nonlinearity parameter on the solar-wind sub-ion magnetic energy spectrum: FLR-Landau fluid simulations

    Full text link
    The cascade of kinetic Alfv\'en waves (KAWs) at the sub-ion scales in the solar wind is numerically simulated using a fluid approach that retains ion and electron Landau damping, together with ion finite Larmor radius corrections. Assuming initially equal and isotropic ion and electron temperatures, and an ion beta equal to unity, different simulations are performed by varying the propagation direction and the amplitude of KAWs that are randomly driven at a transverse scale of about one fifth of the proton gyroradius in order to maintain a prescribed level of turbulent fluctuations. The resulting turbulent regimes are characterized by the nonlinearity parameter, defined as the ratio of the characteristic times of Alfv\'en wave propagation and of the transverse nonlinear dynamics. The corresponding transverse magnetic energy spectra display power laws with exponents spanning a range of values consistent with spacecraft observations. The meandering of the magnetic field lines together with the ion temperature homogenization along these lines are shown to be related to the strength of the turbulence, measured by the nonlinearity parameter. The results are interpreted in terms of a recently proposed phenomenological model where the homogenization process along field lines induced by Landau damping plays a central role
    • …
    corecore